ﻻ يوجد ملخص باللغة العربية
We demonstrate the production of ultracold polar RbCs molecules in their vibronic ground state, via photoassociation of laser-cooled atoms followed by a laser-stimulated state transfer process. The resulting sample of $X ^1Sigma^+ (v=0)$ molecules has a translational temperature of $sim100 mu$K and a narrow distribution of rotational states. With the method described here it should be possible to produce samples even colder in all degrees of freedom, as well as other bi-alkali species.
We use microwaves to engineer repulsive long-range interactions between ultracold polar molecules. The resulting shielding suppresses various loss mechanisms and provides large elastic cross sections. Hyperfine interactions limit the shielding under
We have produced large samples of ultracold $^{88}$Sr$_2$ molecules in the electronic ground state in an optical lattice. The molecules are bound by 0.05 cm$^{-1}$ and are stable for several milliseconds. The fast, all-optical method of molecule crea
We have successfully implemented the first simultaneous magneto-optical trapping (MOT) of lithium ($^6$Li) and ytterbium ($^{174}$Yb) atoms, towards production of ultracold polar molecules of LiYb. For this purpose, we developed the dual atomic oven
The study of ultracold molecules tightly trapped in an optical lattice can expand the frontier of precision measurement and spectroscopy, and provide a deeper insight into molecular and fundamental physics. Here we create, probe, and image microkelvi
We report the creation and characterization of a near quantum-degenerate gas of polar $^{40}$K-$^{87}$Rb molecules in their absolute rovibrational ground state. Starting from weakly bound heteronuclear KRb Feshbach molecules, we implement precise con