ترغب بنشر مسار تعليمي؟ اضغط هنا

Formation of Conic Cusps at the Surface of Liquid Metal in Electric Field

89   0   0.0 ( 0 )
 نشر من قبل Nickolay Zubarev
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The formation dynamics is studied for a singular profile of a surface of an ideal conducting fluid in an electric field. Self-similar solutions of electrohydrodynamic equations describing the fundamental process of formation of surface conic cusps with angles close to the Taylor cone angle 98.6 are obtained. The behavior of physical quantities (field strength, fluid velocity, surface curvature) near the singularity is established.



قيم البحث

اقرأ أيضاً

106 - N. M. Zubarev 2005
The nonlinear dynamics of the free surface of an ideal conducting liquid in a strong external electric field is studied. It is establish that the equations of motion for such a liquid can be solved in the approximation in which the surface deviates f rom a plane by small angles. This makes it possible to show that on an initially smooth surface for almost any initial conditions points with an infinite curvature corresponding to branch points of the root type can form in a finite time.
98 - N. M. Zubarev 2000
The formation of singularities on a free surface of a conducting ideal fluid in a strong electric field is considered. It is found that the nonlinear equations of two-dimensional fluid motion can be solved in the small-angle approximation. This enabl es us to show that for almost arbitrary initial conditions the surface curvature becomes infinite in a finite time.
Nonlinear dynamics of the free surface of finite depth non-conducting fluid with high dielectric constant subjected to a strong horizontal electric field is considered. Using the conformal transformation of the region occupied by the fluid into a str ip, the process of counter-propagating waves interaction is numerically simulated. The nonlinear solitary waves on the surface can separately propagate along or against the direction of electric field without distortion. At the same time, the shape of the oppositely traveling waves can be distorted as the result of their interaction. In the problem under study, the nonlinearity leads to increasing the waves amplitudes and the duration of their interaction. This effect is inversely proportional to the fluid depth. In the shallow water limit, the tendency to the formation of a vertical liquid jet is observed.
77 - Nikolay M. Zubarev 2004
The nonlinear dynamics of the free surface of an ideal dielectric liquid in a strong electric field is studied. The equation for the evolution of surface electrohydrodynamic waves is derived in the approximation of small surface-slope angles. It is e stablished that the equation can be solved for liquids with sufficiently high values of the permittivity. This makes it possible to describe the interaction of the counter-propagating waves.
Liquid drops and vibrations are ubiquitous in both everyday life and technology, and their combination can often result in fascinating physical phenomena opening up intriguing opportunities for practical applications in biology, medicine, chemistry a nd photonics. Here we study, theoretically and experimentally, the response of pancake-shaped liquid drops supported by a solid plate that vertically vibrates at a single, low acoustic range frequency. When the vibration amplitudes are small, the primary response of the drop is harmonic at the frequency of the vibration. However, as the amplitude increases, the half-frequency subharmonic Faraday waves are excited parametrically on the drop surface. We develop a simple hydrodynamic model of a one-dimensional liquid drop to analytically determine the amplitudes of the harmonic and the first superharmonic components of the linear response of the drop. In the nonlinear regime, our numerical analysis reveals an intriguing cascade of instabilities leading to the onset of subharmonic Faraday waves, their modulation instability and chaotic regimes with broadband power spectra. We show that the nonlinear response is highly sensitive to the ratio of the drop size and Faraday wavelength. The primary bifurcation of the harmonic waves is shown to be dominated by a period-doubling bifurcation, when the drop height is comparable with the width of the viscous boundary layer. Experimental results conducted using low-viscosity ethanol and high-viscocity canola oil drops vibrated at 70 Hz are in qualitative agreement with the predictions of our modelling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا