ﻻ يوجد ملخص باللغة العربية
We report first configuration interaction calculations of hyperfine constants A_parallel and the effective electric field W_d acting on the electric dipole moment of the electron, in two excited electronic states of ^{207}PbO. The obtained hyperfine constants, A_parallel = -3826 MHz for the a(1) state and A_parallel = 4887 MHz for the B(1) state, are in very good agreement with the experimental data, -4113 MHz and 5000 pm 200 MHz, respectively. We find W_d = -(6.1 ^{+1.8}_{-0.6}) 10^{24} Hz/(e cm) for a(1), and W_d = (8.0 pm 1.6) 10^{24} Hz/(e cm) for B(1). The obtained values are analyzed and compared to recent relativistic coupled cluster results and a semiempirical estimate of W_d for the a(1) state.
Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets. This makes it a promising candidate for experimental study of the $mathcal{P}$,$mathcal{T}$-violation. Previous studies concent
We extend our recently-developed heat-bath configuration interaction (HCI) algorithm, and our semistochastic algorithm for performing multireference perturbation theory, to the calculation of excited-state wavefunctions and energies. We employ time-r
A measurement of the magnitude of the electric dipole moment of the electron (eEDM) larger than that predicted by the Standard Model (SM) of particle physics is expected to have a huge impact on the search for physics beyond the SM. Polar diatomic mo
Accurate evaluation of the $mathcal{P}$,$mathcal{T}$-odd Faraday effect (rotation of the polarization plane for the light propagating through a medium in presence of an external electric field) is presented. This effect can arise only due to the $mat
Determination of nuclear moments for many nuclei relies on the computation of hyperfine constants, with theoretical uncertainties directly affecting the resulting uncertainties of the nuclear moments. In this work we improve the precision of such met