ﻻ يوجد ملخص باللغة العربية
An 800L liquid xenon scintillation $gamma$ ray detector is being developed for the MEG experiment which will search for $mu^+tomathrm{e}^+gamma$ decay at the Paul Scherrer Institut. Absorption of scintillation light of xenon by impurities might possibly limit the performance of such a detector. We used a 100L prototype with an active volume of 372x372x496 mm$^3$ to study the scintillation light absorption. We have developed a method to evaluate the light absorption, separately from elastic scattering of light, by measuring cosmic rays and $alpha$ sources. By using a suitable purification technique, an absorption length longer than 100 cm has been achieved. The effects of the light absorption on the energy resolution are estimated by Monte Carlo simulation.
Scintillation light is used in liquid argon (LAr) neutrino detectors to provide a trigger signal, veto information against cosmic rays, and absolute event timing. In this work, we discuss additional opportunities offered by detectors with enhanced se
Scintillation light from gamma ray irradiation in liquid xenon is detected by two Hamamatsu R9288 photomultiplier tubes (PMTs) immersed in the liquid. UV light reflector material, PTFE, is used to optimize the light collection efficiency. The detecto
A large-area Multi-Pixel Photon Counter (MPPC) sensitive to vacuum ultra violet (VUV) light has been developed for the liquid xenon (LXe) scintillation detector of the MEG II experiment. The LXe detector is designed to detect the 52.8,MeV photon from
Scintillation from noble gases is an important technique in particle physics including neutrino beam experiments, neutrino-less double beta-decay and dark matter searches. In liquid argon, the possibility of enhancing the light yield by the addition
We report an in-situ measurement of the nuclear recoil (NR) scintillation decay time constant in liquid xenon (LXe) using the XMASS-I detector at the Kamioka underground laboratory in Japan. XMASS-I is a large single-phase LXe scintillation detector