ترغب بنشر مسار تعليمي؟ اضغط هنا

Hadronic Calibration of the ATLAS Liquid Argon End-Cap Calorimeter in the Pseudorapidity Region 1.6 < |eta| < 1.8 in Beam Tests

214   0   0.0 ( 0 )
 نشر من قبل Sven Menke
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A full azimuthal phi-wedge of the ATLAS liquid argon end-cap calorimeter has been exposed to beams of electrons, muons and pions in the energy range 6 GeV <= E <= 200 GeV at the CERN SPS. The angular region studied corresponds to the ATLAS impact position around the pseudorapidity interval 1.6 < |eta| < 1.8. The beam test set-up is described. A detailed study of the performance is given as well as the related intercalibration constants obtained. Following the ATLAS hadronic calibration proposal, a first study of the hadron calibration using a weighting ansatz is presented. The results are compared to predictions from Monte Carlo simulations, based on GEANT 3 and GEANT 4 models.



قيم البحث

اقرأ أيضاً

87 - T. Barillari 2004
ATLAS has chosen for its Hadronic End-Cap Calorimeter (HEC) the copper-liquid argon sampling technique with flat plate geometry and GaAs pre-amplifiers in the argon. The contruction of the calorimeter is now approaching completion. Results of product ion quality checks are reported and their anticipated impact on calorimeter performance discussed. Selected results, such as linearity, electron and pion energy resolution, uniformity of energy response, obtained in beam tests both of the Hadronic End-Cap Calorimeter by itself, and in the ATLAS configuration where the HEC is in combination with the Electromagnetic End-Cap Calorimeter (EMEC) are described.
126 - B. Deng , J. Thomas , L. Zhang 2021
We present the procedures and results of the quality control tests for the front-end optical link components in the ATLAS Liquid Argon Calorimeter Phase-1 upgrade. The components include a Vertical-Cavity Surface-Emitting Laser (VCSEL) driver ASIC LO Cld, custom optical transmitter/transceiver modules MTx/MTRx, and a transmitter ASIC LOCx2. LOCld, MTx, and LOCx2 each contain two channels with the same structure, while MTRx has a transmitter channel and a receiver channel. Each channel is tested at 5.12 Gbps. A total of 5341 LOCld chips, 3275 MTx modules, 797 MTRx modules, and 3198 LOCx2 chips are qualified. The yields are 73.9%, 98.0%, 98.4%, and 61.9% for LOCld, LOCx2, MTx, and MTRx, respectively.
132 - Tiankuan Liu 2020
The high-luminosity phase of the Large Hadron Collider will provide 5-7 times greater luminosities than assumed in the original detector design. An improved trigger system requires an upgrade of the readout electronics of the ATLAS Liquid Argon Calor imeter. Concepts for the future readout of the 182,500 calorimeter cells at 40-80 MHz and 16-bit dynamic range and the developments of radiation-tolerant, low-noise, low-power, and high-bandwidth front-end electronic components, including preamplifiers and shapers, 14-bit ADCs, and 10-Gb/s laser diode array drivers, are presented in this paper.
The construction of the ATLAS electromagnetic liquid argon calorimeter modules is completed and all the modules are assembled and inserted in the cryostats. During the production period four barrel and three endcap modules were exposed to test beams in order to assess their performance, ascertain the production quality and reproducibility, and to scrutinize the complete energy reconstruction chain from the readout and calibration electronics to the signal and energy reconstruction. It was also possible to check the full Monte Carlo simulation of the calorimeter. The analysis of the uniformity, resolution and extraction of constant term is presented. Typical non-uniformities of 0.5% and typical global constant terms of 0.6% are measured for the barrel and end-cap modules.
65 - V. Izzo , A. Aloisio , F. Ameli 2018
The Belle II experiment is presently in phase-2 operation at the SuperKEKB electron-positron collider in KEK (Tsukuba, Japan). The detector is an upgrade of the Belle experiment at the KEKB collider and it is optimized for the study of rare B decays, being also sensitive to signals of New Physics beyond the Standard Model. The Electromagnetic Calorimeter (ECL) is based on CsI(Tl) scintillation crystals. It splits in a barrel and two annular end-cap regions, these latter named Forward and Backward, according to the asymmetric design of the collider. CsI(Tl) crystals deliver a high light output at an affordable cost, however their yield changes with temperature and can be permanently damaged by humidity, due to the strong chemical affinity for moisture. Each ECL region is then equipped with thermistors and humidity probes to monitor environmental data. While sensors and cabling have been inherited from the original Belle design, the ECL monitoring system has been fully redesigned. In this paper, we present hardware and software architecture deployed for the 2112 CsI(Tl) crystals arranged in the Forward and Backward end-caps. Single-Board Computers (SBCs) have been designed ad-hoc for embedded applications. For sensor read-out, a data-acquisition system based on 24-bit ADCs with local processing capability has been realized and interfaced with the SBCs. EPICS applications send data across the Local Area Network for remote control and display.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا