ﻻ يوجد ملخص باللغة العربية
In the laser excitation of ultracold atoms to Rydberg states, we observe a dramatic suppression caused by van der Waals interactions. This behavior is interpreted as a local excitation blockade: Rydberg atoms strongly inhibit excitation of their neighbors. We measure suppression, relative to isolated atom excitation, by up to a factor of 6.4. The dependence of this suppression on both laser irradiance and atomic density are in good agreement with a mean-field model. These results are an important step towards using ultracold Rydberg atoms in quantum information processing.
We demonstrate the interaction-induced blockade effect in an ultracold $^{88}$Sr gas via studying the time dynamics of a two-photon excitation to the triplet Rydberg series $5mathrm{s}nmathrm{s}, ^3textrm{S}_1$ for five different principle quantum nu
We develop a theoretical approach for the dynamics of Rydberg excitations in ultracold gases, with a realistically large number of atoms. We rely on the reduction of the single-atom Bloch equations to rate equations, which is possible under various e
We present a combined experimental and theoretical study of the effects of Rydberg interactions on Autler-Townes spectra of ultracold gases of atomic strontium. Realizing two-photon Rydberg excitation via a long-lived triplet state allows us to probe
We report the creation of an interacting cold Rydberg gas of strontium atoms. We show that the excitation spectrum of the inner valence electron is sensitive to the interactions in the Rydberg gas, even though they are mediated by the outer Rydberg e
We present a quantum many-body description of the excitation spectrum of Rydberg polarons in a Bose gas. The many-body Hamiltonian is solved with functional determinant theory, and we extend this technique to describe Rydberg polarons of finite mass.