ﻻ يوجد ملخص باللغة العربية
Pump-probe experiments combining pulses from a X-ray FEL and an optical femtosecond laser are very attractive for sub-picosecond time-resolved studies. Since the synchronization between the two independent light sources to an accuracy of 100 fs is not yet solved, it is proposed to derive both femtosecond radiation pulses from the same electron bunch but from two insertion devices. This eliminates the need for synchronization and developing a tunable high power femtosecond quantum laser. In the proposed scheme a GW-level soft X-ray pulse is naturally synchronized with a GW-level optical pulse, independent of any jitter in the arrival time of the electron bunches. The concept is based on the generation of optical radiation in a master oscillator-power FEL amplifier (MOPA) configuration. X-ray radiation is generated in an X-ray undulator inserted between the modulator and radiator sections of the optical MOPA scheme. An attractive feature of the FEL amplifier scheme is the absence of any apparent limitations which could prevent operation in the femtosecond regime in a wide (200-900 nm) wavelength range. A commercially available long (nanosecond) pulse dye laser can be used as seed laser.
We put forward a co-axial pump(optical)-probe(X-rays) experimental concept and show performance of the optical component. A Bessel beam generator with a central 100 micrometers-diameter hole (on the optical axis) was fabricated using femtosecond (fs)
We investigate the generation of broadband terahertz (THz) pulses with phase singularity from air plasmas created by fundamental and second harmonic laser pulses. We show that when the second harmonic beam carries a vortex charge, the THz beam acquir
The capability of generating two intense, femtosecond x-ray pulses with controlled time delay opens the possibility of performing time-resolved experiments for x-ray induced phenomena. We have applied this capability to study the photoinduced dynamic
This paper describes an effective frequency doubler scheme for SASE free electron lasers. It consists of an undulator tuned to the first harmonic, a dispersion section, and a tapered undulator tuned to the second harmonic. The first stage is a conven
Studies of ultrafast dynamics along with femtosecond-pulse metrology rely on non-linear processes, induced solely by the exciting/probing pulses or the pulses to be characterized. Extension of these approaches to the extreme-ultraviolet (XUV) spectra