ترغب بنشر مسار تعليمي؟ اضغط هنا

A Modular Object Oriented Data Acquisition System for the Gravitational Wave AURIGA Experiment

42   0   0.0 ( 0 )
 نشر من قبل Antonio Ceseracciu
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The new Data Acquisition system for the gravitational wave detector AURIGA has been designed from the ground up in order to take advantage of hardware and software platforms that became available in recent years; namely, i386 computers running Linux-based free software. This paper describes how advanced software development technologies, such as Object Oriented design and programming and CORBA infrastructure, were exploited to realize a robust, distributed, flexible, and extensible system. Every agent of the Data Acquisition System runs inside an heavyweight framework, conceived to transparently take care of all the agents intercommunication, synchronization, dataflow. It also presents an unified interface to the command and monitoring tools. The DAQ logic is entirely contained in each agents specialized code. In the case of AURIGA the dataflow is designed as a three tier: frontend, builder, consumer. Each tier is represented by a set of agents possibly running on different hosts. This system is well fit for projects on scales comparable to the AURIGA experiment: permanent and temporary data storage is based on the Frame format adopted by the gravitational wave community, and the design is reliable and fault-tolerant for low rate systems.


قيم البحث

اقرأ أيضاً

A data acquisition (DAQ) system has been developed which will read out and control calorimeters serving as prototype systems for a future detector at an electron-positron linear collider. This is a modular, flexible and scalable DAQ system in which t he hardware and signals are standards-based, using FPGAs and serial links. The idea of a backplaneless system was also pursued with a commercial development board housed in a PC and a chain of concentrator cards between it and the detector forming the basis of the system. As well as describing the concept and performance of the system, its merits and disadvantages are discussed.
J-PARC E16 is an experiment to examine the origin of hadron mass through a systematic measurement of spectral changes of vector mesons in nuclei. The measurement of $e^{+}e^{-}$ pairs from the decay of vector mesons will provide the information of th e partial restoration of the chiral symmetry in a normal nuclear density. To resolve a pulse pile-up and achieve good discrimination of $e^{pm}$ from the background of a reaction rate of an order of 10 MHz, the data acquisition (DAQ) system uses waveform sampling chips of APV25 and DRS4. The trigger rate and data rate are expected to be 1 kHz and 130--330 MiB/s, respectively. The DAQ system for readout of APV25 and DRS4 were developed, where events were synchronized by common trigger and tag data. The first commissioning in beam, called Run-0a, was performed in June 2020 with about 1/4 of the designed setup. The DAQ worked with a trigger rate of 300 Hz in the Run-0a and the main bottleneck was a large data size of APV25. Further optimization of the DAQ system will improve the performance.
We describe the electronics and data acquisition system used in the first phase of the PandaX experiment -- a 120 kg dual-phase liquid xenon dark matter direct detection experiment in the China Jin-Ping Underground Laboratory. This system utilized 18 0 channels of commercial flash ADC waveform digitizers. This system achieved low trigger threshold ($<$1 keV electron-equivalent energy) and low deadtime data acquistion during the entire experimental run.
The WaveDAQ is a newly-designed digitization Trigger and Data AcQuisition system (TDAQ) allowing Multi-gigasample waveform recording on a large amount of channels (up to 16384) by using the DRS4 analog switched capacitor array as downconverting ASIC. A high bandwidth, programmable input stage has been coupled with a bias generator to allow SiPM operation without need of any other external apparatus. The trigger generation is tightly coupled within the system to limit the required depth of the analog memory, allowing faster digitization speeds. This system has been designed for the MEG experiment upgrade but also proved to be highly scalable and already found other applications.
PandaX-4T is a dark matter direct detection experiment located in China jinping underground laboratory. The central apparatus is a dual-phase xenon detector containing 4 ton liquid xenon in the sensitive volume, with about 500 photomultipliers instru mented in the top and the bottom of the detector. In this paper we present a completely new system of readout electronics and data acquisition in the PandaX-4T experiment. Compared to the one used in the previous PandaX dark matter experiments, the new system features triggerless readout and higher bandwidth. With triggerless readout, dark matter searches are not affected by the efficiency loss of external triggers. The system records single photelectron signals of the dominant PMTs with an average efficiency of 96%, and achieves the bandwidth of more than 450 MB/s. The system has been used to successfully acquire data during the commissioning runs of PandaX-4T.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا