ﻻ يوجد ملخص باللغة العربية
This paper introduces a new method for stacking beams in the longitudinal phase space. It uses RF barriers to confine and compress beams in an accelerator, provided that the machine momentum acceptance is a few times larger than the momentum spread of the injected beam. This is the case for the Fermilab Main Injector. A barrier RF system employing Finemet cores and high-voltage solid-state switches is under construction. The goal is to double the number of protons per cycle on the production target for Run2 and NuMI experiments.
The Recycler Ring at Fermilab uses a barrier rf system for all of its rf manipulations. In this paper, I will give an overview of historical perspective on barrier rf systems, the longitudinal beam dynamics issues, aspects of rf linearization to prod
Two barrier RF systems were fabricated, tested and installed in the Fermilab Main Injector. Each can provide 8 kV rectangular pulses (the RF barriers) at 90 kHz. When a stationary barrier is combined with a moving barrier, injected beams from the Boo
Chapter 4 in High-Luminosity Large Hadron Collider (HL-LHC). The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user commun
This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field
Radio-frequency (RF) systems deliver the power to change the energy of a charged particle beam, and they are integral parts of linear and circular accelerators. A longitudinal electrical field in the direction of the beam is generated in a resonant s