ترغب بنشر مسار تعليمي؟ اضغط هنا

GUI Tools for an Enhanced User Experience

45   0   0.0 ( 0 )
 نشر من قبل Paul A. Kienzle
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P.A. Kienzle




اسأل ChatGPT حول البحث

For instruments with many occasional users, it is important to have easy to use software. To support the frequent users it is important to be flexible. Using a scripting language to design a GUI and exposing it to the user allows us to do both. We present our work on a GUI for reflectometry data analysis and reduction written in Tcl/Tk and Octave, with underlying C code for the numerically intensive portions. As well as being easier to train new users, the new software allows existing users to do in minutes what used to take hours.

قيم البحث

اقرأ أيضاً

We present an introduction to some concepts of Bayesian data analysis in the context of atomic physics. Starting from basic rules of probability, we present the Bayes theorem and its applications. In particular we discuss about how to calculate simpl e and joint probability distributions and the Bayesian evidence, a model dependent quantity that allows to assign probabilities to different hypotheses from the analysis of a same data set. To give some practical examples, these methods are applied to two concrete cases. In the first example, the presence or not of a satellite line in an atomic spectrum is investigated. In the second example, we determine the most probable model among a set of possible profiles from the analysis of a statistically poor spectrum. We show also how to calculate the probability distribution of the main spectral component without having to determine uniquely the spectrum modeling. For these two studies, we implement the program Nested fit to calculate the different probability distributions and other related quantities. Nested fit is a Fortran90/Python code developed during the last years for analysis of atomic spectra. As indicated by the name, it is based on the nested algorithm, which is presented in details together with the program itself.
We present an open-source program free to download for academic use with full user-friendly graphical interface for performing flexible and robust background subtraction and dipole fitting on magnetization data. For magnetic samples with small moment sizes or sample environments with large or asymmetric magnetic backgrounds, it can become necessary to separate background and sample contributions to each measured raw voltage measurement before fitting the dipole signal to extract magnetic moments. Originally designed for use with pressure cells on a Quantum Design MPMS3 SQUID magnetometer, SquidLab is a modular object-oriented platform implemented in Matlab with a range of importers for different widely-available magnetometer systems (including MPMS, MPMS-XL, MPMS-IQuantum, MPMS3 and S700X models), and has been tested with a broad variety of background and signal types. The software allows background subtraction of baseline signals, signal preprocessing, and performing fits to dipole data using Levenberg-Marquadt non-linear least squares, or a singular value decomposition linear algebra algorithm which excels at picking out noisy or weak dipole signals. A plugin system allows users to easily extend the built-in functionality with their own importers, processes or fitting algorithms. SquidLab can be downloaded, under Academic License, from the University of Warwick depository (wrap.warwick.ac.uk/129665).
Prototyping is one of the core activities of User-Centered Design (UCD) processes and an integral component of Human-Computer Interaction (HCI) research. For many years, prototyping was synonym of paper-based mockups and only more recently we can say that dedicated tools for supporting prototyping activities really reach the market. In this paper, we propose to analyze the evolution of prototyping tools for supporting the development process of interactive systems. For that, this paper presents a review of the literature. We analyze the tools proposed by academic community as a proof of concepts and/or support to research activities. Moreover, we also analyze prototyping tools that are available in the market. We report our observation in terms of features that appear over time and constitute milestones for understating the evolution of concerns related to the development and use of prototyping tools. This survey covers publications published since 1988 in some of the main HCI conferences and 118 commercial tools available on the web. The results enable a brief comparison of characteristics present in both academic and commercial tools, how they have evolved, and what are the gaps that can provide insights for future research and development.
167 - Alexander Glazov 2017
A method for correcting for detector smearing effects using machine learning techniques is presented. Compared to the standard approaches the method can use more than one reconstructed variable to infere the value of the unsmeared quantity on event b y event basis. The method is implemented using a sequential neural network with a categorical cross entropy as the loss function. It is tested on a toy example and is shown to satisfy basic closure tests. Possible application of the method for analysis of the data from high energy physics experiments is discussed.
Characterization of the electronic band structure of solid state materials is routinely performed using photoemission spectroscopy. Recent advancements in short-wavelength light sources and electron detectors give rise to multidimensional photoemissi on spectroscopy, allowing parallel measurements of the electron spectral function simultaneously in energy, two momentum components and additional physical parameters with single-event detection capability. Efficient processing of the photoelectron event streams at a rate of up to tens of megabytes per second will enable rapid band mapping for materials characterization. We describe an open-source workflow that allows user interaction with billion-count single-electron events in photoemission band mapping experiments, compatible with beamlines at $3^{text{rd}}$ and $4^{text{th}}$ generation light sources and table-top laser-based setups. The workflow offers an end-to-end recipe from distributed operations on single-event data to structured formats for downstream scientific tasks and storage to materials science database integration. Both the workflow and processed data can be archived for reuse, providing the infrastructure for documenting the provenance and lineage of photoemission data for future high-throughput experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا