ترغب بنشر مسار تعليمي؟ اضغط هنا

A Single Shot, Sub-picosecond Beam Bunch Characterization with Electro-optic Techniques

95   0   0.0 ( 0 )
 نشر من قبل Yannis K. Semertzidis
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the past decade, the bunch lengths of electrons in accelerators have decreased dramatically to the range of a few picoseconds cite{Uesaka94,Trotz97}. Measurement of the length as well as the longitudinal profile of these short bunches have been a topic of research in a number of institutions cite{Uesaka97,Liu97,Hutchins00}. One of the techniques uses the electric field induced by the passage of electrons in the vicinity of a birefringent crystal to change its optical characteristics. Well-established electro-optic techniques can then be used to measure the temporal characteristics of the electron bunch. In this paper we present a novel, non-invasive, single-shot approach to improve the resolution to tens of femtoseconds so that sub-millimeter bunch length can be measured.



قيم البحث

اقرأ أيضاً

89 - Stefan Funkner 2018
The development of fast detection methods for comprehensive monitoring of electron bunches is a prerequisite to gain comprehensive control over the synchrontron emission in storage rings with their MHz repetition rate. Here, we present a proof-of-pri nciple experiment with at detailed description of our implementation to detect the longitudinal electron bunch profiles via single-shot, near-field electro-optical sampling at the Karlsruhe Research Accelerator (KARA). Our experiment is equipped with an ultra-fast line array camera providing a high-throughput MHz data stream. We characterize statistical properties of the obtained data set and give a detailed description for the data processing as well as for the calculation of the charge density profiles, which where measured in the short-bunch operation mode of KARA. Finally, we discuss properties of the bunch profile dynamics on a coarse-grained level on the example of the well-known synchrotron oscillation.
Cavity Beam Length Monitor is beam length measurement detector metering ultra short bunch. We designed a RF front-end and make simulations to testify this has high signal-to-noise ratio ensuring beam length measurement precision.
A high-precision intra-bunch-train beam orbit feedback correction system has been developed and tested in the ATF2 beamline of the Accelerator Test Facility at the High Energy Accelerator Research Organization in Japan. The system uses the vertical p osition of the bunch measured at two beam position monitors (BPMs) to calculate a pair of kicks which are applied to the next bunch using two upstream kickers, thereby correcting both the vertical position and trajectory angle. Using trains of two electron bunches separated in time by 187.6~ns, the system was optimised so as to stabilize the beam offset at the feedback BPMs to better than 350~nm, yielding a local trajectory angle correction to within 250~nrad. The quality of the correction was verified using three downstream witness BPMs and the results were found to be in agreement with the predictions of a linear lattice model used to propagate the beam trajectory from the feedback region. This same model predicts a corrected beam jitter of c.~1~nm at the focal point of the accelerator. Measurements with a beam size monitor at this location demonstrate that reducing the trajectory jitter of the beam by a factor of 4 also reduces the increase in the measured beam size as a function of beam charge by a factor of c.~1.6.
With electron beam durations down to femtoseconds and sub-femtoseconds achievable in current state-of-the-art accelerators, longitudinal bunch length diagnostics with resolution at the attosecond level are required. In this paper, we present such a n ovel measurement device which combines a high power laser modulator with an RF deflecting cavity in the orthogonal direction. While the laser applies a strong correlated angular modulation to a beam, the RF deflector ensures the full resolution of this streaking effect across the bunch hence recovering the temporal beam profile with sub-femtosecond resolution. Preliminary measurements to test the key components of this concept were carried out at the Accelerator Test Facility (ATF) at Brookhaven National Laboratory recently, the results of which are presented and discussed here. Moreover, a possible application of the technique for novel accelerator schemes is examined based on simulations with the particle-tracking code elegant and our beam profile reconstruction tool.
189 - D.Cesar , J.Maxson , P.Musumeci 2016
We present the results of an experiment where a short focal length (~ 1.3 cm) permanent magnet electron lens is used to image micron-size features of a metal sample in a single shot, using an ultra- high brightness ps-long 4 MeV electron beam from a radiofrequency photoinjector. Magnifcation ratios in excess of 30x were obtained using a triplet of compact, small gap (3.5 mm), Halbach-style permanent magnet quadrupoles with nearly 600 T/m field gradients. These results pave the way to- wards single shot time-resolved electron microscopy and open new opportunities in the applications of high brightness electron beams.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا