ترغب بنشر مسار تعليمي؟ اضغط هنا

Evaporative cooling of cesium atoms in the gravito-optical surface trap

73   0   0.0 ( 0 )
 نشر من قبل Rudolf Grimm
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on cooling of an atomic cesium gas closely above an evanescent-wave. Our first evaporation experiments show a temperature reduction from 10muK down to 300nK along with a gain in phase-space density of almost two orders of magnitude. In a series of measurements of heating and spin depolarization an incoherent background of resonant photons in the evanescent-wave diode laser light was found to be the limiting factor at this stage.

قيم البحث

اقرأ أيضاً

We report on cooling of an atomic cesium gas closely above an evanescent-wave atom mirror. At high densitities, optical cooling based on inelastic reflections is found to be limited by a density-dependent excess temperature and trap loss due to ultra cold collisions involving repulsive molecular states. Nevertheless, very good starting conditions for subsequent evaporative cooling are obtained. Our first evaporation experiments show a temperature reduction from 10muK down to 300nK along with a gain in phase-space density of almost two orders of magnitude.
In recent years, cold atoms could prove their scientific impact not only on ground but in microgravity environments such as the drop tower in Bremen, sounding rockets and parabolic flights. We investigate the preparation of cold atoms in an optical d ipole trap, with an emphasis on evaporative cooling under microgravity. Up to $ 1times10^{6} $ rubidium-87 atoms were optically trapped from a temporarily dark magneto optical trap during free fall in the droptower in Bremen. The efficiency of evaporation is determined to be equal with and without the effect of gravity. This is confirmed using numerical simulations that prove the dimension of evaporation to be three-dimensional in both cases due to the anharmonicity of optical potentials. These findings pave the way towards various experiments on ultra-cold atoms under microgravity and support other existing experiments based on atom chips but with plans for additional optical dipole traps such as the upcoming follow-up missions to current and past spaceborne experiments.
A theoretical investigation for implementing a scheme of forced evaporative cooling in radio-frequency (rf) adiabatic potentials is presented. Supposing the atoms to be trapped by a rf field RF1, the cooling procedure is facilitated using a second rf source RF2. This second rf field produces a controlled coupling between the spin states dressed by RF1. The evaporation is then possible in a pulsed or continuous mode. In the pulsed case, atoms with a given energy are transferred into untrapped dressed states by abruptly switching off the interaction. In the continuous case, it is possible for energetic atoms to adiabatically follow the doubly-dressed states and escape out of the trap. Our results also show that when the frequencies of the fields RF1 and RF2 are separated by at least the Rabi frequency associated with RF1, additional evaporation zones appear which can make this process more efficient.
We consider the feasibility of observing a trap-induced resonance [Stock et al., Phys. Rev. Lett. 91, 183201 (2003)] for the case of two 133Cs atoms, trapped in separated wells of a polarization-gradient optical lattice, and interacting through a mul tichannel scattering process. Due to the anomalously large scattering length of cesium dimers, a strong coupling can occur between vibrational states of the trap and a weakly bound molecular state that is made resonant by the ac-Stark shift of the lattice. We calculate the energy spectrum of the two-atom system as a function of the distance between two potential wells by connecting the solutions of the Schroedinger equation for the short-range molecular potential to that of the long-range trap in a self-consistent manner. The short-range potential is treated through a multichannel pseudopotential, parametrized by the K matrix, calculated numerically for atoms in free space in a close-coupling approximation. This captures both the bound molecular spectrum as well as the energy-dependent scattering for all partial waves. We establish realistic operating conditions under which the trap-induced resonance could be observed and show that this strong and coherent interaction could be used as a basis for high-fidelity two-qubit quantum logic operations.
We investigate how the nonlinearity of the Zeeman shift for strong magnetic fields affects the dynamics of rf field induced evaporative cooling in magnetic traps. We demonstrate for the 87-Rb and 23-Na F=2 trapping states with wave packet simulations how the cooling stops when the rf field frequency goes below a certain limit (for the 85-Rb F=2 trapping state the problem does not appear). We examine the applicability of semiclassical models for the strong field case as an extension of our previous work [Phys. Rev. A 58, 3983 (1998)]. Our results verify many of the aspects observed in a recent $^{87}$Rb experiment [Phys. Rev. A 60, R1759 (1999)].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا