ترغب بنشر مسار تعليمي؟ اضغط هنا

Geomagnetic control of the spectrum of traveling ionospheric disturbances based on data from a global GPS network

180   0   0.0 ( 0 )
 نشر من قبل Oleg
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper an attempt is made to verify the hypothesis on the role of geomagnetic disturbances as a factor determining the intensity of traveling ionospheric disturbances (TIDs). To improve the statistical validity of the data, we have used the based on the new GLOBDET technology method involving a global spatial averaging of disturbance spectra of the total electron content (TEC). To characterize the TID intensity quantitatively, we suggest that a new global index of the degree of disturbance should be used, which is equal to the mean value of the rms variations in TEC within the selected range of spectral periods (of 20-60 min in the present case). It was found that power spectra of daytime TEC variations in the range of 20-60 min periods under quiet conditions have a power-law form, with the slope index k = -2.5. With an increase of the level of magnetic disturbance, there is an increase in total intensity of TIDs, with a concurrent kink of the spectrum caused by an increase in oscillation intensity in the range of 20-60 min. It was found that an increase in the level of geomagnetic activity is accompanied by an increase in total intensity of TEC; however, it correlates not with the absolute level of Dst, but with the value of the time derivative of Dst (a maximum correlation coefficient reaches -0.94). The delay of the TID response of the order of 2 hours is consistent with the view that TIDs are generated in auroral regions, and propagate equatorward with the velocity of about 300-400 m/s.



قيم البحث

اقرأ أيضاً

We investigate an unusual class of medium-scale traveling ionospheric disturbances (MS TIDs) of the nonwave type, isolated ionospheric disturbances (IIDs) that manifest themselves in total electron content (TEC) variations in the form of single aperi odic negative TEC disturbances of a duration of about 10 min (the total electron content spikes, TECS). It was found that TECS are observed in no more than 1-2 % of the total number of radio paths. We present the results derived from analyzing the dependence of TECS parameters on local time, and on the level of geomagnetic activity. The TECS amplitude exceeds at least one order of magnitude the TEC fluctuation intensity under background conditions. To analyze TECS dynamic characteristics the event of 5 October, 2001 was used.
Results derived from analysing the ionosphere response to faint and bright solar flares are presented. The analysis used technology of a global detection of ionospheric effects from solar flares as developed by the authors, on the basis of phase meas urements of the total electron content (TEC) in the ionosphere using an international GPS network. The essence of the method is that use is made of appropriate filtering and a coherent processing of variations in the TEC which is determined from GPS data, simultaneously for the entire set of visible GPS satellites at all stations used in the analysis. This technique is useful for identifying the ionospheric response to faint solar flares (of X-ray class C) when the variation amplitude of the TEC response to separate line-on-sight to GPS satellite is comparable to the level of background fluctuations. The dependence of the TEC variation response amplitude on the flares location on the Sun is investigated.
Basic properties of the mid-latitude large-scale traveling ionospheric disturbances (LS TIDs) during the maximum phase of a strong magnetic storm of 6-8 April 2000 are shown. Total electron content (TEC) variations were studied by using data from GPS receivers located in Russia and Central Asia. The nightglow response to this storm at mesopause and termospheric altitudes was also measured by optical instruments FENIX located at the observatory of the Institute of Solar-Terrestrial Physics, (51.9 deg. N, 103.0 deg. E) and MORTI located at the observatory of the Institute of Ionosphere (43.2 deg. N, 77.0 deg. E). Observations of the O (557.7 nm, 630.0 nm, 360-410 nm, and 720-830 nm) emissions originating from atmospheric layers centered at altitudes of 90 km, 97 km, and 250 km were carried out at Irkutsk and of the O_2 (866.5 nm) emission originating from an atmospheric layer centered at altitude of 95 km was carried out at Almaty. Variations of the f_0F2 and virtual altitude of the F2 layer were measured at Almaty as well. An analysis of data was performed for the time interval 17.00-21.00 UT comprising a maximum of the Dst derivative. Results have shown that the storm-induced solitary large-scale wave with duration of 1 hour and with the front width of 5000 km moved equatorward with the velocity of 200 ms-1 to a distance of no less than 1000 km. The TEC disturbance, basically displaying an electron content depression in the maximum of the F2 region, reveals a good correlation with growing nightglow emission, the temporal shift between the TEC and emission variation maxima being different for different altitudes.
Using the international ground-based network of two-frequency receivers of the GPS navigation system provides a means of carrying out a global, continuous and fully-computerized monitoring of phase fluctuations of signals from satellite-borne radio e ngineering systems caused by the Earths inhomogeneous and nonstationary ionosphere. We found that during major geomagnetic storms, the errors of determination of the range, frequency Doppler shift and angles of arrival of transionospheric radio signals exceeds the one for magnetically quiet days by one order of magnitude as a minimum. This can be the cause of performance degradation of current satellite radio engineering navigation, communication and radar systems as well as of superlong-baseline radio interferometry systems.
This paper proposes a new method for estimating the contribution from different ionospheric regions to the response of total electron content variations to the solar flare which uses the effect of partial shadowing of the atmosphere by the terrestria l globe. The study uses GPS stations located near the boundary of the shadow on the ground in the nightside hemisphere. The beams between the satellite-borne transmitter and the receiver on the ground for these stations pass partially through the atmosphere lying in the region of total shadow and partially through the illuminated atmosphere. The analysis of the ionospheric effect of a powerful solar flare of class X5.7/3B that was recorded on July 14, 2000 (10:24 UT, N22W07) in quiet geomagnetic conditions (Dst=-10 nT) has shown that about 20% of the TEC increase correspond to the ionospheric region lying below 100 km, about 5% refer to the ionospheric E-region (100-140 km), about 30% correspond to the F1-region (140-200 km), and about 30% to regions lying above 300 km.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا