ترغب بنشر مسار تعليمي؟ اضغط هنا

An Optical Trap for Collisional Studies on Cold Fermionic Potassium

51   0   0.0 ( 0 )
 نشر من قبل Giovanni Modugno
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on trapping of fermionic 40K atoms in a red-detuned standing-wave optical trap, loaded from a magneto-optical trap. Typically, 10^6 atoms are loaded at a density of 10^12 cm^-3 and a temperature of 65 microK, and trapped for more than 1 s. The optical trap appears to be the proper environment for performing collisional measurements on the cold atomic sample. In particular we measure the elastic collisional rate by detecting the rethermalization following an intentional parametric heating of the atomic sample. We also measure the inelastic two-body collisional rates for unpolarized atoms in the ground hyperfine states, through detection of trap losses.

قيم البحث

اقرأ أيضاً

We report the first demonstration of an inductively coupled magnetic ring trap for cold atoms. A uniform, ac magnetic field is used to induce current in a copper ring, which creates an opposing magnetic field that is time-averaged to produce a smooth cylindrically symmetric ring trap of radius 5 mm. We use a laser-cooled atomic sample to characterise the loading efficiency and adiabaticity of the magnetic potential, achieving a vacuum-limited lifetime in the trap. This technique is suitable for creating scalable toroidal waveguides for applications in matterwave interferometry, offering long interaction times and large enclosed areas.
A steady-state magneto-optical trap (MOT) of fermionic strontium atoms operating on the 7.5 kHz-wide ${^1mathrm{S}_0} - {^3mathrm{P}_1}$ transition is demonstrated. This MOT features $8.4 times 10^{7}$ atoms, a loading rate of $1.3times 10^{7}$atoms/ s, and an average temperature of 12 $mu$K. These parameters make it well suited to serve as a source of atoms for continuous-wave superradiant lasers operating on strontiums mHz-wide clock transition. Such lasers have only been demonstrated using pulsed Sr sources, limiting their range of applications. Our MOT makes an important step toward continuous operation of these devices, paving the way for continuous-wave active optical clocks.
We have studied hetero- and homonuclear excited state/ground state collisions by loading both $^{85}$Rb and $^{87}$Rb into a far off resonant trap (FORT). Because of the relatively weak confinement of the FORT, we expect the hyperfine structure of th e different isotopes to play a crucial role in the collision rates. This dependence on hyperfine structure allows us to measure collisions associated with long range interatomic potentials of different structure: such as long and short ranged; or such as purely attractive, purely repulsive, or mixed attractive and repulsive. We observe significantly different loss rates for different excited state potentials. Additionally, we observe that some collisional channels loss rates are saturated at our operating intensities (~15 mW/cm$^{2}$). These losses are important limitations in loading dual isotope optical traps.
163 - Graeme Harvie , Adam Butcher , 2019
We study optical gain in a gas of cold 39K atoms. The gain is observed during operation of a conventional magneto-optical trap without the need for additional fields. Measurements of transmission spectra from a weak probe show that the gain is due to stimulated Raman scattering between hyperfine ground states. The experimental results are reproduced by a simplified six-level model, which also helps explain why such gain is not observed in similar experiments with rubidium or cesium.
We propose a trap for cold neutral atoms using a fictitious magnetic field induced by a nanofiber-guided light field. In close analogy to magnetic side-guide wire traps realized with current-carrying wires, a trapping potential can be formed when app lying a homogeneous magnetic bias field perpendicular to the fiber axis. We discuss this scheme in detail for laser-cooled cesium atoms and find trap depths and trap frequencies comparable to the two-color nanofiber-based trapping scheme but with one order of magnitude lower powers of the trapping laser field. Moreover, the proposed scheme allows one to bring the atoms closer to the nanofiber surface, thereby enabling efficient optical interfacing of the atoms with additional light fields. Specifically, optical depths per atom, $sigma_0/A_{rm eff}$, of more than 0.4 are predicted, making this system eligible for nanofiber-based nonlinear and quantum optics experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا