ترغب بنشر مسار تعليمي؟ اضغط هنا

Status of Superconducting RF Linac Development for APT

112   0   0.0 ( 0 )
 نشر من قبل K. C. Dominic Chan
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper describes the development progress of high current superconducting RF linacs in Los Alamos, performed to support a design of the linac for the APT (Accelerator Production of Tritium) Project. The APT linac design includes a CW superconducting RF high energy section, spanning an energy range of 211 to 1030 MeV, and operating at a frequency of 700 MHz with two constant beta sections (beta of 0.64 and 0.82). In the last two years, we have progressed towards build a cryomodule with beta of 0.64. We completed the designs of the 5 cell superconducting cavities and the 210 kW power couplers. We are scheduled to begin assembly of the cryomodule in September 2000. In this paper, we present an overview of the status of our development efforts and a report on the results of the cavity and coupler test program.



قيم البحث

اقرأ أيضاً

84 - M.Mizumoto , N.Ouchi , J.Kusano 2000
The JAERI/KEK Joint Project for the high-intensity proton accelerator facility has been proposed with a superconducting (SC) linac option from 400 MeV to 600MeV. System design of the SC linac has been carried out based on the equipartitioning concept . The SC linac is planned to use as an injector to a 3GeV rapid cycling synchrotron (RCS) for spallation neutron source after it meets requirement to momentum spread less than +-0.1%. In the R&D work for SC cavities, vertical tests of single-cell and 5 cell cavities were performed. Experiments on multi-cell (5 cell) cavities of b=0.50 and b=0.89 at 2K were carried out with values of maximum electric surface peak fields of 23MV/m and 31MV/m, respectively. A model describing dynamic Lorentz detuning for SC cavities has been developed for pulse mode operation. Validity of the model was confirmed experimentally to simulate the performance.
72 - R. Akre , V. Bharadwaj , P. Emma 2000
The Linac Coherent Light Source (LCLS) project at SLAC uses a dense 15 GeV electron beam passing through a long undulator to generate extremely bright x-rays at 1.5 angstroms. The project requires electron bunches with a nominal peak current of 3.5kA and bunch lengths of 0.020mm (70fs). The bunch compression techniques used to achieve the high brightness impose challenging tolerances on the accelerator RF phase and amplitude. The results of measurements on the existing SLAC linac RF phase and amplitude stability are summarised and improvements needed to meet the LCLS tolerances are discussed.
The Advanced Superconducting Test Acccelerator (ASTA) is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration sectio n consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beamlines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating a 750-MeV electron beam with ILC beam intensity. An expansion of this facility was recently completed that will provide the capability to upgrade the accelerator to a total beam energy of 1.5-GeV. Two new buildings were also constructed adjacent to the ASTA facility to house a new cryogenic plant and multiple superconducting RF (SRF) cryomodule test stands. In addition to testing accelerator components, this facility will be used to test RF power systems, instrumentation, and control systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.
199 - M. Diomede 2018
In the framework of the upgrade of the SPARC_LAB facility at INFN-LNF, named EuPRAXIA@SPARC_LAB, a high gradient linac is foreseen. One of the most suitable options is to realize it in X-band. A preliminary design study of both accelerating structure s and power distribution system has been performed. It is based on 0.5 m long travelling wave (TW) accelerating structures operating in the 2{pi}/3 mode and fed by klystrons and pulse compressor systems. The main parameters of the structures and linac are presented with the basic RF linac layout.
58 - S. Fukuda , A. Anami , C. Kubota 2000
The construction of the 60-MeV proton linac has started as a low-energy front of the KEK/JAERI Joint Project for a high-intensity proton accelerator facility at KEK. The accelerating frequency is 324 MHz. Five UHF klystrons are used as an rf source; their ratings have a maximum power of 3 MW, a beam pulse width of a 700 micro-sec (an rf pulse width is 650 micro-sec) and a repetition rate of 50 pps. We have manufactured a proto-type rf source (a power-supply system with a modulating-anode pulse modulator and prototype klystrons). In this paper, the specifications and developments of the rf source, including the WR-2300 waveguide system, are summarized. During the manufacturing process, strong oscillations due to back-going electrons from the collector were observed. This phenomenon was analyzed both experimentally and theoretically. We have tested up to an output power of nearly 3 MW, and succeeded to test the DTL hot-model structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا