ترغب بنشر مسار تعليمي؟ اضغط هنا

Damage of cellular material under simultaneous application of pressure and pulsed electric field

421   0   0.0 ( 0 )
 نشر من قبل Maksym Bazhal
 تاريخ النشر 2000
  مجال البحث فيزياء علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Influence of pulsed electric field (PEF) simultaneous to pressure treatment on moisture expression from fine-cut cellular raw material has been investigated. Dependencies of specific conductivity $sigma$, liquid yield $Y$, instantaneous flow rate $v$ and qualitative juice characteristics at different modes of PEF treatment are discussed. Three main consolidation phases were observed in a case of mechanical expression. A unified approach is proposed for liquid yield data analysis allowing to reduce the data scattering caused by differences in the quality of samples. Simultaneous application of pressure and PEF treatment allows to reveal a passive form of electrical damage. Pressure provokes the damage of defected cells, enhances diffusion migration of moisture in porous cellular material and depresses the cell resealing processes. PEF application at a moment when a sample specific electrical conductivity reaches minimum and pressure achieves its constant value seemed to be the most optimal.



قيم البحث

اقرأ أيضاً

101 - N.I. Lebovka , M.I. Bazhal , 1999
We consider the simplified dielectric breakage model used for simulation of the kinetics of cellular material breakage under the pulsed electric field (PEF) treatment. The model is based on an effective media approximation, which includes equations w ith the same morphology parameters as in percolation theory. The probability of a whole cell breakage by the pulse with $t_{i}$ duration is estimated on the basis of electroporation theory. We account for the bridging effect resulting from the deviations of the local conductivity near the selected cell from the average effective media conductivity. The most important feature of the proposed model is the existence of the ``jamming behaviour occurring sometimes in experimental observations of the biological tissue breakage. The different transitions corresponding to the ``jamming steps are identified. The experimental results are obtained for thin apple slices treated with electric pulses at field strengths $E=0.2-2.2$ kV cm$^{-1}$, pulse durations $t_{i}=10-100$ $mu$s, pulse repetition times $t=10-100$ ms and the number of pulses $N=1-100000$. The model gives results consistent in general with the experimental observations. We discuss the correlation between the degree of cellular material destruction, field strength, time of PEF treatment and power consumption.
297 - J. Mattar , M. Turk , M. Nonus 2013
The batch fermentation process, inoculated by pulsed electric field (PEF) treated wine yeasts (S. cerevisiae Actiflore F33), was studied. PEF treatment was applied to the aqueous yeast suspensions (0.12 % wt.) at the electric field strengths of E=100 and 6000 V/cm using the same pulse protocol (number of pulses of n=1000, pulse duration of ti=100 mks, and pulse repetition time of dt=100 ms). Electro-stimulation was confirmed by the observed growth of electrical conductivity of suspensions. The fermentation was running at 30{deg}C for 150 hours in an incubator with synchronic agitation. The obtained results clearly evidence the positive impact of PEF treatment on the batch fermentation process. Electro-stimulation resulted in improvement of such process characteristics as mass losses, consumption of soluble matter content ({deg}Brix) and synthesis of proteins. It also resulted in a noticeable acceleration of consumption of sugars at the initial stage of fermentation in the lag phase. At the end of the lag phase (t=40 hours), consumption of fructose in samples with electrically activated inocula exceeded fructose consumption in samples with control inocula by 2.33 times when it was activated at E=100 V/cm and by 3.98 times after treatment at E=6000 V/cm. At the end of the log phase (120 hours of fermentation), 30% mass reduction was reached in samples with PEF-treated inocula (E=6000 V/cm), whereas the same mass reduction of the control sample required approximately, 20 hours of extra fermentation. The possible mechanisms of electro-stimulation are also discussed in details.
In cerebrovascular networks, some vertices are more connected to each other than with the rest of the vasculature, defining a community structure. Here, we introduce a class of model networks built by rewiring Random Regular Graphs, which enables to reproduce this community structure and other topological properties of cerebrovascular networks. We use these model networks to study the global flow reduction induced by the removal of a single edge. We analytically show that this global flow reduction can be expressed as a function of the initial flow rate in the removed edge and of a topological quantity, both of which display probability distributions following Cauchy laws, i.e. with large tails. As a result, we show that the distribution of blood flow reductions is strongly influenced by the community structure. In particular, the probability of large flow reductions increases substantially when the community structure is stronger, weakening the network resilience to single capillary occlusions. We discuss the implications of these findings in the context of Alzheimers Disease, in which the importance of vascular mechanisms, including capillary occlusions, is beginning to be uncovered.
We investigate the electric field induced resistive switching effect and magnetic field induced fraction enlargement on a polycrystalline sample of a colossal magnetoresistive compound displaying intrinsic phase coexistence. Our data show that the el ectric effect (presumably related to the presence of inhomogeinities) is present in a broad temperature range(300 to 20 K), being observable even in a mostly homogeneous ferromagnetic state. In the temperature range in which low magnetic field determines the phase coexistence fraction, both effects, though related to different mechanisms, are found to determine multilevel nonvolatile memory capabilities simultaneously.
We analyze the spectral properties of squeezed light produced by means of pulsed, single-pass degenerate parametric down-conversion. The multimode output of this process can be decomposed into characteristic modes undergoing independent squeezing evo lution akin to the Schmidt decomposition of the biphoton spectrum. The main features of this decomposition can be understood using a simple analytical model developed in the perturbative regime. In the strong pumping regime, for which the perturbative approach is not valid, we present a numerical analysis, specializing to the case of one-dimensional propagation in a beta-barium borate waveguide. Characterization of the squeezing modes provides us with an insight necessary for optimizing homodyne detection of squeezing. For a weak parametric process, efficient squeezing is found in a broad range of local oscillator modes, whereas the intense generation regime places much more stringent conditions on the local oscillator. We point out that without meeting these conditions, the detected squeezing can actually diminish with the increasing pumping strength, and we expose physical reasons behind this inefficiency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا