ترغب بنشر مسار تعليمي؟ اضغط هنا

Solitary coherent structures in viscoelastic shear flow: computation and mechanism

177   0   0.0 ( 0 )
 نشر من قبل K. Arun Kumar
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Starting from stationary bifurcations in Couette-Dean flow, we compute nontrivial stationary solutions in inertialess viscoelastic circular Couette flow. These solutions are strongly localized vortex pairs, exist at arbitrarily large wavelengths, and show hysteresis in the Weissenberg number, similar to experimentally observed ``diwhirl patterns. Based on the computed velocity and stress fields, we elucidate a heuristic, fully nonlinear mechanism for these flows. We propose that these localized, fully nonlinear structures comprise fundamental building blocks for complex spatiotemporal dynamics in the flow of elastic liquids.

قيم البحث

اقرأ أيضاً

A reduced description of shear flows consistent with the Reynolds number scaling of lower-branch exact coherent states in plane Couette flow [J. Wang et al., Phys. Rev. Lett. 98, 204501 (2007)] is constructed. Exact time-independent nonlinear solutio ns of the reduced equations corresponding to both lower and upper branch states are found for Waleffe flow [F. Waleffe, Phys. Fluids 9, 883--900 (1997)]. The lower branch solution is characterized by fluctuations that vary slowly along the critical layer while the upper branch solutions display a bimodal structure and are more strongly focused on the critical layer. The reduced model provides a rational framework for investigations of subcritical spatiotemporal patterns in parallel shear flows.
The flow of viscoelastic fluids in channels and pipes remain poorly understood, particularly at low Reynolds numbers. Here, we investigate the flow of polymeric solutions in straight channels using pressure measurements and particle tracking. The law of flow resistance is established by measuring the flow friction factor $f_{eta}$ versus flow rate. Two regimes are found: a transitional regime marked by rapid increase in drag, and a turbulent-like regime characterized by a sudden decrease in drag and a weak dependence on flow rate. Lagrangian trajectories show finite transverse modulations not seen in Newtonian fluids. These curvature perturbations far downstream can generate sufficient hoop stresses to sustain the flow instabilities in the parallel shear flow.
The aim of the present work is to investigate the role of coherent structures in the generation of the secondary flow in a turbulent square duct. The coherent structures are defined as connected regions of flow where the product of the instantaneous fluctuations of two velocity components is higher than a threshold based on the long-time turbulence statistics, in the spirit of the three-dimensional quadrant analysis proposed by Lozano-Duran et al. (J. Fluid Mech., vol. 694, 2012, pp. 100-130). We consider both the direct contribution of the structures to the mean in-plane velocity components and their geometrical properties. The instantaneous phenomena taking place in the turbulent duct are compared with turbulent channel flow at Reynolds numbers of $Re_tau=180$ and $360$, based on friction velocity at the center-plane and channel half height. In the core region of the duct, the fractional contribution of intense events to the wall-normal component of the mean velocity is in very good agreement with that in the channel, despite the presence of the secondary flow in the former. Additionally, the shapes of the three-dimensional objects do not differ significantly in both flows. On the other hand, in the corner region of the duct, the proximity of the walls affects both the geometrical properties of the coherent structures and the contribution to the mean component of the vertical velocity, which is less relevant than that of the complementary portion of the flow not included in such objects. Our results show however that strong Reynolds shear-stress events, despite the differences observed between channel and duct, do not contribute directly to the secondary motion, and thus other phenomena need to be considered instead.
Viscoelastic fluids are a common subclass of rheologically complex materials that are encountered in diverse fields from biology to polymer processing. Often the flows of viscoelastic fluids are unstable in situations where ordinary Newtonian fluids are stable, owing to the nonlinear coupling of the elastic and viscous stresses. Perhaps more surprisingly, the instabilities produce flows with the hallmarks of turbulence -- even though the effective Reynolds numbers may be $O(1)$ or smaller. We provide perspectives on viscoelastic flow instabilities by integrating the input from speakers at a recent international workshop: historical remarks, characterization of fluids and flows, discussion of experimental and simulation tools, and modern questions and puzzles that motivate further studies of this fascinating subject. The materials here will be useful for researchers and educators alike, especially as the subject continues to evolve in both fundamental understanding and applications in engineering and the sciences.
Newtonian pipe flow is known to be linearly stable at all Reynolds numbers. We report, for the first time, a linear instability of pressure driven pipe flow of a viscoelastic fluid, obeying the Oldroyd-B constitutive equation commonly used to model d ilute polymer solutions. The instability is shown to exist at Reynolds numbers significantly lower than those at which transition to turbulence is typically observed for Newtonian pipe flow. Our results qualitatively explain experimental observations of transition to turbulence in pipe flow of dilute polymer solutions at flow rates where Newtonian turbulence is absent. The instability discussed here should form the first stage in a hitherto unexplored dynamical pathway to turbulence in polymer solutions. An analogous instability exists for plane Poiseuille flow.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا