ترغب بنشر مسار تعليمي؟ اضغط هنا

A Cupronickel Rotating Band Pion Production Target for Muon Colliders

240   0   0.0 ( 0 )
 نشر من قبل Bruce J. King
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English
 تأليف B.J. King




اسأل ChatGPT حول البحث

A conceptual design is presented for a high power cupronickel pion production target. It forms a circular band in a horizontal plane with approximate dimensions of: 2.5 meters radius, 6 cm high and 0.6 cm thick. The target is continuously rotated at 3 m/s to carry heat away from the production region to a water cooling channel. Bunches of 16 GeV protons with total energies of 270 kJ and repetition rates of 15 Hz are incident tangentially to arc of the target along the symmetry axis of a 20 Tesla solenoidal magnetic capture channel. The mechanical layout and cooling setup are described. Results are presented from realistic MARS Monte Carlo computer simulations of the pion yield and energy deposition in the target. ANSYS finite element calculations are beginning to give predictions for the resultant shock heating stresses.



قيم البحث

اقرأ أيضاً

85 - B.J. King 2002
A conceptual design is presented for a high power pion production target for muon colliders and neutrino factories that is based around a rotating metal band.
282 - B.J. King 2000
An update is presented on a conceptual design for a pion production target station using a rotating cupronickel band and that was originally proposed for use at a muon collider facility with a 4 MW pulsed proton beam. After reviewing the salient desi gn features and motivations for this target, ongoing studies are described that are attempting to benchmark the thermal stresses and radiation damage on the target band using data from the Fermilab antiproton source and other operating targets. Possible parameter optimizations and alternative technologies for the rotating band are surveyed, including discussion on the the various proton beam parameters that might be encountered for rotating band targets at either muon colliders or neutrino factories. Finally, an outline is proposed for a possible R&D path towards capability for the actual construction of rotating band pion production targets.
107 - K. Yonehara 2012
Fast muon beam six dimensional (6D) phase space cooling is essential for muon colliders. The Helical Cooling Channel (HCC) uses hydrogen-pressurized RF cavities imbedded in a magnet system with solenoid, helical dipole, and helical quadrupole compone nts that provide the continuous dispersion needed for emittance exchange and effective 6D beam cooling. A series of HCC segments, each with sequentially smaller aperture, higher magnetic field, and higher RF frequency to match the beam size as it is cooled, has been optimized by numerical simulation to achieve a factor of 105 emittance reduction in a 300 m long channel with only a 40% loss of beam. Conceptual designs of the hardware required for this HCC system and the status of the RF studies and HTS helical solenoid magnet prototypes are described.
The Muon g-2 Experiment plans to use the Fermilab Recycler Ring for forming the proton bunches that hit its production target. The proposed scheme uses one RF system, 80 kV of 2.5 MHz RF. In order to avoid bunch rotations in a mismatched bucket, the 2.5 MHz is ramped adiabatically from 3 to 80 kV in 90 ms. In this study, the interaction of the primary proton beam with the production target for the Muon g-2 Experiment is numerically examined.
A new scheme to produce very low emittance muon beams using a positron beam of about 45~GeV interacting on electrons on target is presented. One of the innovative topics to be investigated is the behaviour of the positron beam stored in a low emitt ance ring with a thin target, that is directly inserted in the ring chamber to produce muons. Muons can be immediately collected at the exit of the target and transported to two $mu^+$ and $mu^-$ accumulator rings and then accelerated and injected in muon collider rings. We focus in this paper on the simulation of the e$^+$ beam interacting with the target, the effect of the target on the 6-D phase space and the optimization of the e$^+$ ring design to maximize the energy acceptance. We will investigate the performance of this scheme, ring plus target system, comparing different multi-turn simulations. The source is considered for use in a multi-TeV collider in ref.[1]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا