ترغب بنشر مسار تعليمي؟ اضغط هنا

Modelling the dynamics of turbulent floods

87   0   0.0 ( 0 )
 نشر من قبل Tony Roberts
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Consider the dynamics of turbulent flow in rivers, estuaries and floods. Based on the widely used k-epsilon model for turbulence, we use the techniques of centre manifold theory to derive dynamical models for the evolution of the water depth and of vertically averaged flow velocity and turbulent parameters. This new model for the shallow water dynamics of turbulent flow: resolves the vertical structure of the flow and the turbulence; includes interaction between turbulence and long waves; and gives a rational alternative to classical models for turbulent environmental flows.

قيم البحث

اقرأ أيضاً

Floods, tides and tsunamis are turbulent, yet conventional models are based upon depth averaging inviscid irrotational flow equations. We propose to change the base of such modelling to the Smagorinksi large eddy closure for turbulence in order to ap propriately match the underlying fluid dynamics. Our approach allows for large changes in fluid depth to cater for extreme inundations. The key to the analysis underlying the approach is to choose surface and bed boundary conditions that accommodate a constant turbulent shear as a nearly neutral mode. Analysis supported by slow manifold theory then constructs a model for the coupled dynamics of the fluid depth and the mean turbulent lateral velocity. The model resolves the internal turbulent shear in the flow and thus may be used in further work to rationally predict erosion and transport in turbulent floods.
136 - Paul Manneville 2016
Plane Couette flow presents a regular oblique turbulent-laminar pattern over a wide range of Reynolds numbers R between the globally stable base flow profile at low R<R_g and a uniformly turbulent regime at sufficiently large R>R_t. The numerical sim ulations that we have performed on a pattern displaying a wavelength modulation show a relaxation of that modulation in agreement with what one would expect from a standard approach in terms of dissipative structures in extended geometry though the structuration develops on a turbulent background. Some consequences are discussed.
We examine statistical properties of a laser beam propagating in a turbulent medium. We prove that the intensity fluctuations at large propagation distances possess Gaussian probability density function and establish quantitative criteria for realizi ng the Gaussian statistics depending on the laser propagation distance, the laser beam waist, the laser frequency and the turbulence strength. We calculate explicitly the laser envelope pair correlation function and corrections to its higher order correlation functions breaking Gaussianity. We discuss also statistical properties of the brightest spots in the speckle pattern.
High-resolution non-ideal magnetohydrodynamical simulations of the turbulent magnetized ISM, powered by supernovae types Ia and II at Galactic rate, including self-gravity and non-equilibriuim ionization (NEI), taking into account the time evolution of the ionization structure of H, He, C, N, O, Ne, Mg, Si, S and Fe, were carried out. These runs cover a wide range (from kpc to sub-parsec) of scales, providing resolution independent information on the injection scale, extended self-similarity and the fractal dmension of the most dissipative structures.
Wall-bounded flows experience a transition to turbulence characterized by the coexistence of laminar and turbulent domains in some range of Reynolds number R, the natural control parameter. This transitional regime takes place between an upper thresh old Rt above which turbulence is uniform (featureless) and a lower threshold Rg below which any form of turbulence decays, possibly at the end of overlong chaotic transients. The most emblematic cases of flow along flat plates transiting to/from turbulence according to this scenario are reviewed. The coexistence is generally in the form of bands, alternatively laminar and turbulent, and oriented obliquely with respect to the general flow direction. The final decay of the bands at Rg points to the relevance of directed percolation and criticality in the sense of statistical-physics phase transitions. The nature of the transition at Rt where bands form is still somewhat mysterious and does not easily fit the scheme holding for pattern-forming instabilities at increasing control parameter on a laminar background. In contrast, the bands arise at Rt out of a uniform turbulent background at a decreasing control parameter. Ingredients of a possible theory of laminar-turbulent patterning are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا