ﻻ يوجد ملخص باللغة العربية
We have examined the dynamical behavior of the kink solutions of the one-dimensional sine-Gordon equation in the presence of a spatially periodic parametric perturbation. Our study clarifies and extends the currently available knowledge on this and related nonlinear problems in four directions. First, we present the results of a numerical simulation program which are not compatible with the existence of a radiative threshold, predicted by earlier calculations. Second, we carry out a perturbative calculation which helps interpret those previous predictions, enabling us to understand in depth our numerical results. Third, we apply the collective coordinate formalism to this system and demonstrate numerically that it accurately reproduces the observed kink dynamics. Fourth, we report on a novel occurrence of length scale competition in this system and show how it can be understood by means of linear stability analysis. Finally, we conclude by summarizing the general physical framework that arises from our study.
Our principal focus in the present work is on one-dimensional kink-antikink and two-dimensional kink-antikink stripe interactions in the sine-Gordon equation. Using variational techniques, we reduce the interaction dynamics between a kink and an anti
In this paper, we study the long-time dynamics and stability properties of the sine-Gordon equation $$f_{tt}-f_{xx}+sin f=0.$$ Firstly, we use the nonlinear steepest descent for Riemann-Hilbert problems to compute the long-time asymptotics of the sol
We consider $lambdaphi^{4}$ kink and sine-Gordon soliton in the presence of a minimal length uncertainty proportional to the Planck length. The modified Hamiltonian contains an extra term proportional to $p^4$ and the generalized Schrodinger equation
We consider the reflectionless transport of sine-Gordon solitons on a line. Transparent boundary conditions for the sine-Gordon equation on a line are derived using the so-called potential approach. Our numerical implementation of these novel boundar
We consider the existence and spectral stability of static multi-kink structures in the discrete sine-Gordon equation, as a representative example of the family of discrete Klein-Gordon models. The multi-kinks are constructed using Lins method from a