ﻻ يوجد ملخص باللغة العربية
The recent experimental data obtained by the OBELIX group on $bar{p}$D and $bar{p}^4$He total annihilation cross sections are analyzed. The combined analysis of these data with existing antiprotonic atom data allows, for the first time, the imaginary parts of the S-wave scattering lengths for the two nuclei to be extracted. The obtained values are: $Im a^{sc}_0 = [- 0.62 pm 0.02 ({stat}) pm 0.04 ({sys})] fm$ for $bar{p}$D and $Im a^{sc}_0 = [- 0.36pm 0.03({stat})^{+0.19}_{-0.11}({sys})] fm$ for $bar{p}^4$He. This analysis indicates an unexpected behaviour of the imaginary part of the $bar{p}$-nucleus S-wave scattering length as a function of the atomic weight A: $|Im a^{sc}_0|$ ($bar{p}$p) > $|Im a^{sc}_0|$ ($bar{p}$D) > $|Im a^{sc}_0|$ ($bar{p}^4$He).
We calculate, in a systematic way, the enhancement effect on antiproton-proton and antiproton-nucleus annihilation cross sections at low energy due to the initial state electrostatic interaction between the projectile and the target nucleus. This cal
Antiproton scattering off $^3He$ and $^4He$ targets is considered at beam energies below 300 MeV within the Glauber-Sitenko approach, utilizing the $bar N N$ amplitudes of the Julich model as input. A good agreement with available data on differentia
We present an optical potential analysis of the antiproton-proton interactions at low energies. Our optical potential is purely phenomenological, and has been parametrized on data recently obtained by the Obelix Collaboration at momenta below 180 MeV
We set up a plane wave impulse approximation (PWIA) formalism for the analysis of the annihilation cross sections of antinucleons on nuclear targets at very low momenta (below 100 MeV/c), where semiclassical approximations cant be applied. Since, as
Fragmentation reactions induced on light target nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below are studied with the latest Los Alamos Monte Carlo transport code MCNP6 and with its cascade-exciton model (CEM) and Los Ala