ﻻ يوجد ملخص باللغة العربية
We propose a novel method for calculating resonances in three-body Coulombic systems. The method is based on the solution of the set of Faddeev and Lippmann-Schwinger integral equations, which are designed for solving the three-body Coulomb problem. The resonances of the three-body system are defined as the complex-energy solutions of the homogeneous Faddeev integral equations. We show how the kernels of the integral equations should be continued analytically in order that we get resonances. As a numerical illustration a toy model for the three-$alpha$ system is solved.
We reconsider the homogeneous Faddeev-Merkuriev integral equations for three-body Coulombic systems with attractive Coulomb interactions and point out that the resonant solutions are contaminated with spurious resonances. The spurious solutions are r
Three-body resonances in atomic systems are calculated as complex-energy solutions of Faddeev-type integral equations. The homogeneous Faddeev-Merkuriev integral equations are solved by approximating the potential terms in a Coulomb-Sturmian basis. T
Interatomic Coulombic decay (ICD) is a mechanism which allows microscopic objects to rapidly exchange energy. When the two objects are distant, the energy transfer between the donor and acceptor species takes place via the exchange of a virtual photo
We discuss the dynamical generation of some low-lying $1/2^+$ $Sigma$s and $Lambda$s in two-meson one-baryon systems. These systems have been constructed by adding a pion in $S$-wave to the $bar{K} N$ pair and its coupled channels, where the $1/2^-$
The $^9$C nucleus and related capture reaction, ${^8mathrm{B}}(p,gamma){^9mathrm{C}}$, have been intensively studied with an astrophysical interest. Due to the weakly-bound nature of $^9$C, its structure is likely to be described as the three-body ($