ﻻ يوجد ملخص باللغة العربية
Given a vector space of microscopic quantum observables, density functional theory is formulated on its dual space. A generalized Hohenberg-Kohn theorem and the existence of the universal energy functional in the dual space are proven. In this context ordinary density functional theory corresponds to the space of one-body multiplication operators. When the operators close under commutation to form a Lie algebra, the energy functional defines a Hamiltonian dynamical system on the coadjoint orbits in the algebras dual space. The enhanced density functional theory provides a new method for deriving the group theoretic Hamiltonian on the coadjoint orbits from the exact microscopic Hamiltonian.
The nuclear symmetry energy represents a response to the neutron-proton asymmetry. In this survey we discuss various aspects of symmetry energy in the framework of nuclear density functional theory, considering both non-relativistic and relativistic
The neutron and proton drip lines represent the limits of the nuclear landscape. While the proton drip line is measured experimentally up to rather high $Z$-values, the location of the neutron drip line for absolute majority of elements is based on t
Modern applications of Covariant Density Functional Theory (CDFT) are discussed. First we show a systematic investigation of fission barriers in actinide nuclei within constraint relativistic mean field theory allowing for triaxial deformations. In t
In the framework of the Density Functional Theory for superconductors, we study the restoration of the particle number symmetry by means of the projection technique. Conceptual problems are outlined and numerical difficulties are discussed. Both are
The fission process is a fascinating phenomenon in which the atomic nucleus, a compact self-bound mesoscopic system, undergoes a spontaneous or induced quantum transition into two or more fragments. A predictive, accurate and precise description of n