ترغب بنشر مسار تعليمي؟ اضغط هنا

First Order Phase Transitions in Neutron star Matter: Droplets and Coherent Neutrino Scattering

102   0   0.0 ( 0 )
 نشر من قبل Sanjay Reddy
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A first order phase transition at high baryon density implies that a mixed phase can occupy a significant region of the interior of a neutron star. In this article we investigate the effect of a droplet phase on neutrino transport inside the core. Two specific scenarios of the phase transition are examined, one having a kaon condensate and the other having quark matter in the high density phase. The coherent scattering of neutrinos off the droplets greatly increases the neutrino opacity of the mixed phase. We comment on how the existence of such a phase will affect a supernova neutrino signal.

قيم البحث

اقرأ أيضاً

We present a microscopic model for coherent pion production off nuclei induced by neutrinos. This model is built upon a model for single nucleon processes that goes beyond the usual Delta dominance by including non resonant background contributions. We include nuclear medium effects: medium corrections to Delta$ properties and outgoing pion absortion via an optical potential. This results in major modifications to cross sections for low energy experiments when compared with phenomenological models like Rein-Sehgals.
109 - C. G. Payne , S. Bacca , G. Hagen 2019
Coherent elastic neutrino scattering on the 40Ar nucleus is computed with coupled-cluster theory based on nuclear Hamiltonians inspired by effective field theories of quantum chromodynamics. Our approach is validated by calculating the charge form fa ctor and comparing it to data from electron scattering. We make predictions for the weak form factor, the neutron radius, and the neutron skin, and estimate systematic uncertainties. The neutron-skin thickness of 40Ar40 is consistent with results from density functional theory. Precision measurements from coherent elastic neutrino-nucleus scattering could potentially be used to extract these observables and help to constrain nuclear models.
In a field-theoretical context, we consider the Euclidean $(phi^4+phi^6)_D$ model compactified in one of the spatial dimensions. We are able to determine the dependence of the transition temperature ($T_{c}$)for a system described by this model, conf ined between two parallel planes, as a function of the distance($L$) separating them. We show that $T_{c}$ is a concave function of $L^{-1}$. We determine a minimal separation below which the transition is suppressed.
As the density of matter increases, atomic nuclei disintegrate into nucleons and, eventually, the nucleons themselves disintegrate into quarks. The phase transitions (PTs) between these phases can vary from steep first order to smooth crossovers, dep ending on certain conditions. First-order PTs with more than one globally conserved charge, so-called non-congruent PTs, have characteristic differences compared to congruent PTs. In this conference proceeding we discuss the non-congruence of the quark deconfinement PT at high densities and/or temperatures relevant for heavy-ion collisions, neutron stars, proto-neutron stars, supernova explosions, and compact-star mergers.
False vacuum decay in quantum mechanical first order phase transitions is a phenomenon with wide implications in cosmology, and presents interesting theoretical challenges. In the standard approach, it is assumed that false vacuum decay proceeds thro ugh the formation of bubbles that nucleate at random positions in spacetime and subsequently expand. In this paper we investigate the presence of correlations between bubble nucleation sites using a recently proposed semi-classical stochastic description of vacuum decay. This procedure samples vacuum fluctuations, which are then evolved using classical lattice simulations. We compute the two-point function for bubble nucleation sites from an ensemble of simulations, demonstrating that nucleation sites cluster in a way that is qualitatively similar to peaks in random Gaussian fields. We qualitatively assess the phenomenological implications of bubble clustering in early Universe phase transitions, which include features in the power spectrum of stochastic gravitational waves and an enhancement or suppression of the probability of observing bubble collisions in the eternal inflation scenario.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا