ترغب بنشر مسار تعليمي؟ اضغط هنا

Third flow component as QGP signal

108   0   0.0 ( 0 )
 نشر من قبل Laszlo P. Csernai
 تاريخ النشر 1999
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A review of earlier fluid dynamical calculations with QGP show a softening of the directed flow while with hadronic matter this effect is absent. The effect shows up in the reaction plane as enhanced emission which is orthogonal to the directed flow. Thus, it is not shadowed by the deflected projectile and target. As both of these flow components are in the reaction plane these form an enhanced elliptic flow pattern. Recent experimental data at 11 AGeV and above show the same softening, hinting at QGP formation.

قيم البحث

اقرأ أيضاً

In earlier studies we have proposed that most parton $v_2$ comes from the anisotropic escape of partons, not from the hydrodynamic flow, even for semi-central Au+Au collisions at $sqrt {s_{NN}}=200$ GeV. Here we study the flavor dependence of this es cape mechanism with a multi-phase transport model. In contrast to naive expectations, we find that the charm $v_2$ is much more sensitive to the hydrodynamic flow than the lighter quark $v_2$, and the fraction of $v_2$ from the escape mechanism decreases strongly with the quark mass for large collision systems. We also find that the light quark collective flow is essential for the charm quark $v_2$. Our finding thus suggests that heavy quark flows are better probes of the quark-gluon-plasma properties than light quark flows.
71 - Chun Shen 2020
I review recent developments in the phenomenological study of the quark-gluon plasma (QGP) transport properties based on a personal selection of results that were presented at Quark Matter 2019. The constraints on the temperature dependence of QGP sh ear and bulk viscosity are summarized. I discuss new theory advancements towards more realistic 3D dynamical simulations of heavy-ion collisions at finite baryon density. The challenges and opportunities of applying hydrodynamics to small collision systems are highlighted.
The dynamical development of expanding Quark-gluon Plasma (QGP) flow is studied in a 3+1D fluid dynamical model with a globally symmetric, initial condition. We minimize fluctuations arising from complex dynamical processes at finite impact parameter s and from fluctuating random initial conditions to have a conservative fluid dynamical background estimate for the statistical distributions of the thermodynamical parameters. We also avoid a phase transition in the equation of state, and we let the matter supercool during the expansion. Then central Pb+Pb collisions at $sqrt{s_{NN}} = 2.76$ TeV are studied in an almost perfect fluid dynamical model, with azimuthally symmetric initial state generated in a dynamical flux-tube model. The general development of thermodynamical extensives are also shown for lower energies. We observe considerable deviations from a thermal equilibrium source as a consequence of the fluid dynamical expansion arising from a least fluctuating initial state.
83 - J. Letessier 2000
We identify the major physics milestones in the development of strange hadrons as an observable for both the formation of quark-gluon plasma, and of the ensuing explosive disintegration of deconfined matter fireball formed in relativistic heavy ion c ollisions at 160--20A GeV. We describe the physical properties of QGP phase and show agreement with the expectations based on an analysis of hadron abundances. We than also demonstrate that the m_t shape of hadron spectra is in qualitative agreement with the sudden breakup of a supercooled QGP fireball.
The nearest two years on experiment STAR the upgrade is planned, which will make it possible to identify particles up to momentum $sim$ 3 GeV/c. This will open possibility to carry out new and more detailed researches of properties of a nuclear matte r formed in nucleus-nucleus collisions at RHIC. In this work we offer to carry out of the polarization studies, which can give important additional information about the process of forming the new state of nuclear matter, and also about properties of the formed state. A unique probe of information about all stages of formation and evolution of nuclear matter are dileptons, due to their electromagnetic interaction with the nuclear matter. In this work we pay main attention to the examination of polarization characteristics of dileptons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا