ﻻ يوجد ملخص باللغة العربية
A review of earlier fluid dynamical calculations with QGP show a softening of the directed flow while with hadronic matter this effect is absent. The effect shows up in the reaction plane as enhanced emission which is orthogonal to the directed flow. Thus, it is not shadowed by the deflected projectile and target. As both of these flow components are in the reaction plane these form an enhanced elliptic flow pattern. Recent experimental data at 11 AGeV and above show the same softening, hinting at QGP formation.
In earlier studies we have proposed that most parton $v_2$ comes from the anisotropic escape of partons, not from the hydrodynamic flow, even for semi-central Au+Au collisions at $sqrt {s_{NN}}=200$ GeV. Here we study the flavor dependence of this es
I review recent developments in the phenomenological study of the quark-gluon plasma (QGP) transport properties based on a personal selection of results that were presented at Quark Matter 2019. The constraints on the temperature dependence of QGP sh
The dynamical development of expanding Quark-gluon Plasma (QGP) flow is studied in a 3+1D fluid dynamical model with a globally symmetric, initial condition. We minimize fluctuations arising from complex dynamical processes at finite impact parameter
We identify the major physics milestones in the development of strange hadrons as an observable for both the formation of quark-gluon plasma, and of the ensuing explosive disintegration of deconfined matter fireball formed in relativistic heavy ion c
The nearest two years on experiment STAR the upgrade is planned, which will make it possible to identify particles up to momentum $sim$ 3 GeV/c. This will open possibility to carry out new and more detailed researches of properties of a nuclear matte