ﻻ يوجد ملخص باللغة العربية
A closed-form thermodynamic pole approach,TPA, is developed for average description of the E1 radiative strength functions using the microcanonical ensemble for initial states. A semiclassical description of the collective excitation damping in this method is based on modern physical notion on the relaxation processes in Fermi systems.The TPA model gives rather accurate means of simultaneous description of the gamma- decay and photoabsorption strength functions in the medium and heavy nuclei. It is able to cover a relatively wide energy interval, ranging from zeroth gamma-ray energy to values above GDR peak energy, as compared with the others closed-form models for calculation of the E1 strength.
The results of the study of gamma-transition description in fast neutron capture and photofission are presented. Recent experimental data were used, namely, the spectrum of prompt gamma-rays in the energy range 2{div}18 MeV from 14-MeV neutron captur
Particle-$gamma$ coincidence experiments were performed at the Oslo Cyclotron Laboratory with the $^{181}$Ta(d,X) and $^{181}$Ta($^{3}$He,X) reactions, to measure the nuclear level densities (NLDs) and $gamma$-ray strength functions ($gamma$SFs) of $
The scandium isotopes 44,45Sc have been studied with the 45Sc(3He,alpha gamma)44Sc and 45Sc(3He,3He gamma)45Sc reactions, respectively. The nuclear level densities and gamma-ray strength functions have been extracted using the Oslo method. The experi
The gamma-strength functions and level densities in the quasi-continuum of 147;149Sm isotopes have been extracted from particle-coincidences using the Oslo method. The nuclei of interest were populated via (p,d) reactions on pure 148;150Sm targets an
The nuclear level density and the gamma-ray strength function have been determined for 43Sc in the energy range up to 2 MeV below the neutron separation energy using the Oslo method with the 46Ti(p,alpha)43Sc reaction. A comparison to 45Sc shows that