ترغب بنشر مسار تعليمي؟ اضغط هنا

Weak Decay of $Lambda$ in Nuclei : Quarks vs Mesons

79   0   0.0 ( 0 )
 نشر من قبل Kenji Sasaki
 تاريخ النشر 1999
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Decays of $Lambda$ in nuclei, nonmesonic mode, are studied by using the $Lambda N to NN$ weak transition potential derived from the meson exchange mechanism and the direct quark mechanism. The decay rates are calculated both for the $Lambda$ in symmetric nuclear matter and light hypernuclei. We consider the exchange of six mesons ($pi, K, eta, rho, omega, K^ast$). The form factor in the meson exchange mechanism and short range correlation are carefully studied.

قيم البحث

اقرأ أيضاً

The non-mesonic weak decay of polarized Lambda-hypernuclei is studied for the first time by taking into account, with a Monte Carlo intranuclear cascade code, the nucleon final state interactions. A one-meson-exchange model is employed to describe th e Lambda N-> n N processes in a finite nucleus framework. The relationship between the intrinsic Lambda asymmetry parameter a_Lambda and the asymmetry a^M_Lambda accessible in experiments is discussed. A strong dependence of a^M_Lambda on nucleon final state interactions and detection threshold is obtained. Our results for a^M_Lambda are consistent with ^{11}_Lambda B and ^{12}_Lambda C data but disagree with observations in ^5_Lambda He.
The non-mesonic weak decay of $Lambda$--hypernuclei is studied within a one-meson-exchange potential supplemented by a chirally motivated two-pion-exchange mechanism. The effects of final state interactions on the outgoing nucleons are also taken int o account. In view of the severe discrepancies between theoretical expectations and experimental data, particular attention is payed to the asymmetry of the protons emitted by polarized hypernuclei. The one-meson-exchange model describes the non-mesonic rates and the neutron-to-proton ratio satisfactorily but predicts a too large and negative asymmetry parameter. The uncorrelated and correlated two-pion mechanisms change the rates moderately, thus maintaining the agreement with experiment. The modification in the strength and sign of some decay amplitudes becomes crucial and produces asymmetry parameters which lie well within the experimental observations.
Having in mind its future extension for theoretical investigations related to charmed nuclei, we develop a relativistic formalism for the nonmesonic weak decay of single-$Lambda$ hypernuclei in the framework of the independent-particle shell model an d with the dynamics represented by the $(pi,K)$ one-meson-exchange model. Numerical results for the one-nucleon-induced transition rates of ${}^{12}_{Lambda}textrm{C}$ are presented and compared with those obtained in the analogous nonrelativistic calculation. There is satisfactory agreement between the two approaches, and the most noteworthy difference is that the ratio $Gamma_{n}/Gamma_{p}$ is appreciably higher and closer to the experimental value in the relativistic calculation. Large discrepancies between ours and previous relativistic calculations are found, for which we do not encounter any fully satisfactory explanation. The most recent experimental data is well reproduced by our results. In summary, we have achieved our purpose to develop a reliable model for the relativistic calculation of the nonmesonic weak decay of $Lambda$-hypernuclei, which can now be extended to evaluate similar processes in charmed nuclei.
The nonmesonic weak decay of $Lambda$ hypernuclei is studied within a microscopic diagrammatic approach which is extended to include the three--nucleon induced mechanism. We adopt a nuclear matter formalism which, through the local density approximat ion, allows us to model finite hypernuclei, a one--meson--exchange weak transition potential and a Bonn nucleon--nucleon strong potential. One--, two-- and three--nucleon induced weak decay rates are predicted for $^{12}_Lambda$C by including ground state correlations up to second order in the nucleon--nucleon potential and the recoil of the residual nucleus. Three--nucleon stimulated decays, $Lambda NNNto nNNN$ ($N=n$ or $p$), are considered here for the first time. The obtained decay rates compare well with the latest KEK and FINUDA data. The three--nucleon induced rate turns out to be dominated by $nnp$-- and $npp$--induced decays, it amounts to $sim$ 7% of the total nonmesonic rate and it is $sim 1/2$ of the neutron--induced decay rate. The reduction effect of the nuclear recoil is particularly relevant for the three--nucleon induced rates ($sim$ 15%), less important for the two--nucleon induced rates ($sim$ 4%) and negligible for the one--nucleon induced rates. Given the non--negligible size of the three--nucleon induced contribution and consequently its importance in the precise determination of the complete set of decay rates, new measurements and/or experimental analysis are encouraged.
Recent progress has been experienced in the field of hypernuclear weak decay, especially concerning the ratio of the neutron- to proton-induced Lambda non-mesonic decay rates, G_n/G_p. Theoretical analyses of nucleon coincidence data have been perfor med in a finite nucleus framework. They led to the extraction of G_n/G_p values in agreement with pure theoretical estimates, thus providing an evidence for the solution of a longstanding puzzle. Here we present an alternative approach to the problem, based on a nuclear matter formalism extended to finite nuclei via the local density approximation. The work is motivated by the exigence to make the determination of G_n/G_p from data less model dependent. One-meson-exchange potentials are used for describing both the one- and two-nucleon induced decays, Lambda N -> n N and Lambda N N -> n N N. For the latter, treated within a microscopic approach, the channels Lambda n n -> n n n and Lambda p p -> n p p are included in addition to the mode Lambda n p -> n n p already considered, in a phenomenological way, in previous studies. The propagation of the final nucleons in the residual nucleus is simulated by an intranuclear cascade code. We evaluate single and double coincidence nucleon spectra for the non-mesonic decay of C-12-Lambda. Through the comparison of our predictions with KEK coincidence data we determine G_n/G_p=0.43 pm 0.10 for this hypernucleus, confirming previous finite nucleus analyses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا