ترغب بنشر مسار تعليمي؟ اضغط هنا

On the q-deformation of the NJL model

45   0   0.0 ( 0 )
 نشر من قبل Varese Salvador Timoteo
 تاريخ النشر 1999
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Using a q-deformed fermionic algebra we perform explicitly a deformation of the Nambu-Jona-Lasinio (NJL) Hamiltonian. In the Bogoliubov-Valatin approach we obtain the deformed version of the functional for the total energy, which is minimized to obtain the corresponding gap equation. The breaking of chiral symmetry and its restoration in the limit $q to 0$ are then discussed.



قيم البحث

اقرأ أيضاً

We obtain a q-deformed algebra version of the Nambu-Jona-Lasinio model gap equation. In this framework we discuss some hadronic properties such as the dynamical mass generated for the quarks, the pion decay constant and the phase transition present in this model.
We review the implementation of a q-deformed fermionic algebra in the Nambu--Jona-Lasinio model (NJL). The gap equations obtained from a deformed condensate as well as from the deformation of the NJL Hamiltonian are discussed. The effect of both temp erature and deformation in the chiral symmetry restoration process as well as in the pion properties is studied.
Employing a field dependent three-momentum cut-off regularization technique, we study the phase structure and mesonic masses using the $2$-flavour Nambu-Jona Lasinio model at finite temperature and density in presence of arbitrary external magnetic f ield. This approach is then applied to incorporate the effects of the anomalous magnetic moment(AMM) of quarks on constituent quark mass and thermodynamic observables as a function of temperature/baryonic density. The critical temperature for transition from chiral symmetry broken to the restored phase is observed to decrease with the external magnetic field, which can be classified as inverse magnetic catalysis, while an opposite behaviour is realized in the case of a vanishing magnetic moment, implying magnetic catalysis. These essential features are also reflected in the phase diagram. Furthermore, the properties of the low lying scalar and neutral pseudoscalar mesons are also studied in presence of a hot and dense magnetized medium including AMM of the quarks using random phase approximation. For non-zero values of magnetic field, we notice a sudden jump in the mass of the Goldstone mode at and above the Mott transition temperature which is found to decrease substantially with the increase in magnetic field when the AMM of the quarks are taken into consideration.
The E2/M1 ratio (EMR) of the $Delta$(1232) is extracted from the world data in pion photoproduction by means of an Effective Lagrangian Approach (ELA).This quantity has been derived within a crossing symmetric, gauge invariant, and chiral symmetric L agrangian model which also contains a consistent modern treatment of the $Delta$(1232) resonance. The textit{bare} s-channel $Delta$(1232) contribution is well isolated and Final State Interactions (FSI) are effectively taken into account fulfilling Watsons theorem. The obtained EMR value, EMR$=(-1.30pm0.52)$%, is in good agreement with the latest lattice QCD calculations [Phys. Rev. Lett. 94, 021601 (2005)] and disagrees with results of current quark model calculations.
Dilepton production rate (DPR) from hot and dense quark matter is studied in the presence of an arbitrary external magnetic field using the 2-flavour Nambu--Jona-Lasinio (NJL) model. The anomalous magnetic moment (AMM) of the quarks is taken into con sideration while calculating the constituent quark mass as well as the DPR from the thermo-magnetic medium. An infinite number of quark Landau levels is incorporated so that no approximations are made on the strength of the background magnetic field. The analytic structure of the two point vector current correlation function in the complex energy plane reveals that, in addition to the usual Unitary cut, a non-trival Landau cut appears in the physical kinematic domains solely due to the external magnetic field. Moreover, these kinematic domains of the Unitary and Landau cuts are found to be significantly modified due to the AMM of the quarks. With finite AMM of the quarks, for certain values of the external magnetic field, the kinematically forbidden gap between the Unitary and Landau cuts are shown to vanish leading to the generation of a continuous spectrum of dilepton emission over the whole invariant mass region not observed earlier.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا