ترغب بنشر مسار تعليمي؟ اضغط هنا

The Triaxial Rotation Vibration Model in the Xe-Ba Region

70   0   0.0 ( 0 )
 نشر من قبل U. Meyer
 تاريخ النشر 1998
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The axial Rotation Vibration Model is here extended to describe also triaxial equilibrium shapes with beta and gamma vibrations allowing for the interaction between vibrations and rotations. This Triaxial Rotation Vibration Model (TRVM) is applied to Xe and Ba isotopes with mass numbers between 120 and 130. This area has recently been pointed out to be the O(6) limit of the Interacting Boson Approximation (IBA). The present work shows that the TRVM can equally well describe these nuclei concerning their excitation energies and E2 branching ratios.

قيم البحث

اقرأ أيضاً

The coherent state model (CSM) and the triaxial rotation-vibration model (TRVM) are alternatively used to describe the ground, gamma and beta bands of 228Th. CSM is also applied to the nuclei 126Xe and 130Ba, which were recently considered in TRVM. T he two models are compared with respect to both their underlying assumptions and to their predicted results for energy levels and E2 branching ratios. Both models describe energies and quadrupole transitions of 228Th equally well and in good agreement with experiment, if the 0$_3^+$ level at 1120 keV is interpreted as the head of the beta band. The other two 0$^+$ levels at 832 and 939 keV are most likely not of a pure quadrupole vibration nature as has already been pointed out in the literature.
Chiral rotation observed in $^{128}$Cs is studied using the newly developed microscopic triaxial projected shell model (TPSM) approach. The observed energy levels and the electromagnetic transition probabilities of the nearly degenerate chiral dipole bands in this isotope are well reproduced by the present model. This demonstrates the broad applicability of the TPSM approach, based on a schematic interaction and angular-momentum projection technique, to explain a variety of low- and high-spin phenomena in triaxial rotating nuclei.
The interpretation of the emergent collective behaviour of atomic nuclei in terms of deformed intrinsic shapes [1] is at the heart of our understanding of the rich phenomenology of their structure, ranging from nuclear energy to astrophysical applica tions across a vast spectrum of energy scales. A new window onto the deformation of nuclei has been recently opened with the realization that nuclear collision experiments performed at high-energy colliders, such as the CERN Large Hadron Collider (LHC), enable experimenters to identify the relative orientation of the colliding ions in a way that magnifies the manifestations of their intrinsic deformation [2]. Here we apply this technique to LHC data on collisions of $^{129}$Xe nuclei [3-5] to exhibit the first evidence of non-axiality in the ground state of ions collided at high energy. We predict that the low-energy structure of $^{129}$Xe is triaxial (a spheroid with three unequal axes), and show that such deformation can be determined from high-energy data. This result demonstrates the unique capabilities of precision collider machines such as the LHC as new means to perform imaging of the collective structure of atomic nuclei.
We discuss in depth the application of the classical concepts for interpreting the quantal results from the triaxial rotor core without and with odd-particle. The corresponding limitations caused by the discreteness and finiteness of the angular mome ntum Hilbert space and the extraction of the relevant features from the complex wave function and distributions of various angular momentum components are discussed in detail. New methods based on spin coherent states and spin squeezed states are introduced. It is demonstrated that the spin coherent state map is a powerful tool to visualize the angular momentum geometry of rotating nuclei. The topological nature of the concepts of transverse and longitudinal wobbling is clarified and the transitional axis-flipregime is analysed for the first time.
The triaxial dynamics of the quadrupole-deformed rotor model of both the rigid and the irrotational type have been investigated in detail. The results indicate that level patterns and E2 transitional characters of the two types of the model can be ma tched with each other to the leading order of the deformation parameter $beta$. Especially, it is found that the dynamical structure of the irrotational type with most triaxial deformation ($gamma=30^circ$) is equivalent to that of the rigid type with oblate deformation ($gamma=60^circ$), and the associated spectrum can be classified into the standard rotational bands obeying the rotational $L(L+1)$-law or regrouped into a new ground- and $gamma$-band with odd-even staggering in the new $gamma$-band commonly recognized as a signature of the triaxiality. The differences between the two types of the model in this case are emphasized especially on the E2 transitional characters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا