ﻻ يوجد ملخص باللغة العربية
We investigate dense nuclear matter with a dibaryon Bose-Einstein condensate as a possible intermediate state before the quark-gluon phase transition. An exact analysis of this state of matter is presented in a one-dimensional model. The analysis is based on a reduction of the quantization rules for the N-body problem to N coupled algebraic transcendental equations. We observe that when the Fermi momentum approaches the resonance momentum, the one-particle distribution function increases near the Fermi surface. When the Fermi momentum is increased beyond the resonance momentum, the equation of state becomes softer. The observed behavior can be interpreted in terms of formation of a Bose-Einstein condensate of two-fermion resonances (dibaryons). In cold nuclear matter, it should occur if 2(m_N + epsilon_F) is greater or equal to m_D, where m_N and m_D are respectively the nucleon and dibaryon masses and epsilon_F is the nucleon Fermi energy.
We study the Bose-Einstein condensation of fermionic pairs in the uniform neutron matter by using the concept of the off-diagonal long-range order of the two-body density matrix of the system. We derive explicit formulas for the condensate density $r
We investigate the properties of isospin-symmetric nuclear matter and neutron stars in a chiral model approach adopting the SU(2) parity doublet formulation. This ansatz explicitly incorporates chiral symmetry restoration with the limit of degenerate
We investigate the properties of dense matter and neutron stars. In particular we discuss model calculations based on the parity doublet picture of hadronic chiral symmetry. In this ansatz the onset of chiral symmetry restoration is reflected by the
Radii of charge and neutron distributions are fundamental nuclear properties. They depend on both nuclear interaction parameters related to the equation of state of infinite nuclear matter and on quantal shell effects, which are strongly impacted by
We calculate the chiral condensate in neutron matter at zero temperature based on nuclear forces derived within chiral effective field theory. Two-, three- and four-nucleon interactions are included consistently to next-to-next-to-next-to-leading ord