ترغب بنشر مسار تعليمي؟ اضغط هنا

A Resonance Model for pi N -> Y K and pi Delta -> Y K Reactions for Kaon Production in Heavy Ion Collisions

107   0   0.0 ( 0 )
 نشر من قبل kazuo Tsushima
 تاريخ النشر 1994
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In a resonance model the reactions pi N -> Y K and pi Delta -> Y K are studied. For the reactions pi N -> Lambda K and pi Delta -> Lambda K, the resonances N(1650)(J^P=1/2^-), N(1710)(1/2^+) and N(1720)(3/2^+) are included as intermediate states. For the reactions pi N -> Sigma K, the resonances N(1710)(1/2^+), N(1720)(3/2^+) and Delta(1920)(3/2^+) are considered, while for the pi Delta -> Sigma K reactions the intermediate resonances are N(1710)(1/2^+) and N(1720)(3/2^+). Besides these resonances in the s-channel, the t-channel K^*(892) exchanges are also taken into account as a smooth background. The relevant coupling constants for the meson-baryon vertices are obtained (except for Delta(1920)) from the experimental decay branching ratios of the relevant resonances. All isospin channels of the pi N -> Y K and pi Delta -> Y K cross sections are calculated. By comparing the calculated results with the available experimental data, we find that the total cross sections of the pi N -> Y K reactions can be explained by the resonance model. The pi Delta -> Y K cross sections, for which no experimental data are available, are predicted theoretically. Parametrizations of the calculated total cross sections for all different isospin channels are given for the use of kaon productions in heavy ion collisions. The differential cross sections are also studied.

قيم البحث

اقرأ أيضاً

We report the results of a search for the $B to Y(4260) K, ~Y(4260)to J/psipi^+pi^-$ decays. This study is based on a data sample corresponding to an integrated luminosity of 711~fb$^{-1}$, collected at the $Upsilon(4S)$ resonance with the Belle dete ctor at the KEKB asymmetric-energy $e^+ e^-$ collider. We investigate the $J/psipi^+pi^-$ invariant mass distribution in the range 4.0 to 4.6 GeV/$c^2$ using both $B^+ to J/psi pi^+pi^- K^+$ and $B^0 to J/psi pi^+pi^- K^0_S$ decays. We find excesses of events above the background levels, with a significances of 2.1 and 0.9 standard deviations for charged and neutral $B to Y(4260) K$ decays, respectively, taking into account the systematic uncertainties. These correspond to upper limits on the product of branching fractions, ${cal B}(B^+ to Y(4260) K^+) times {cal B}(Y(4260) to J/psi pi^+ pi^-) <1.4 times 10^{-5}$ and ${cal B}(B^0 to Y(4260) K^0) times {cal B}(Y(4260) to J/psi pi^+ pi^-) <1.7 times 10^{-5}$ at the 90% confidence level.
116 - A. Foerster 2003
The production and the propagation of K+ and of K- mesons in heavy-ion collisions at beam energies of 1 to 2 AGeV have systematically been investigated with the Kaon Spectrometer KaoS at the SIS at the GSI. The ratio of the K+ production excitation f unction for Au+Au and for C+C reactions increases with decreasing beam energy, which is expected for a soft nuclear equation-of-state. At 1.5 AGeV a comprehensive study of the K+ and of the K- emission as a function of the size of the collision system, of the collision centrality, of the kaon energy, and of the polar emission angle has been performed. The K-/K+ ratio is found to be nearly constant as a function of the collision centrality. The spectral slopes and the polar emission patterns are different for K- and for K+. These observations indicate that K+ mesons decouple earlier from the reaction zone than K- mesons.
392 - H. Kamano , T.-S. H. Lee 2016
A model for the $bar K d to pi Y N$ reactions with $Y=Lambda, Sigma$ is developed, aiming at establishing the low-lying $Lambda$ and $Sigma$ hyperon resonances through analyzing the forthcoming data from the J-PARC E31 experiment. The off-shell ampli tudes generated from the dynamical coupled-channels (DCC) model, which was developed in Kamano et al. [Phys. Rev. C 90, 065204 (2014)], are used as input to the calculations of the elementary $bar K N to bar K N$ and $bar K N to pi Y$ subprocesses in the $bar K d to pi Y N$ reactions. It is shown that the cross sections for the J-PARC E31 experiment with a rather high incoming-$bar{K}$ momentum, $|vec p_{bar K}|= 1$ GeV, can be predicted reliably only when the input $bar K N to bar K N$ amplitudes are generated from a $bar KN$ model, such as the DCC model used in this investigation, which describes the data of the $bar K N$ reactions at energies far beyond the $bar K N$ threshold. We find that the data of the threefold differential cross section $dsigma/(dM_{piSigma}dOmega_{p_n})$ for the $K^- d to pi Sigma n$ reaction below the $bar K N$ threshold can be used to test the predictions of the resonance poles associated with $Lambda(1405)$. We also find that the momentum dependence of the threefold differential cross sections for the $K^- d to pi^- Lambda p$ reaction can be used to examine the existence of a low-lying $J^P=1/2^+$ $Sigma$ resonance with a pole mass $M_R = 1457 -i39$ MeV, which was found from analyzing the $K^-p$ reaction data within the employed DCC model.
We have recently observed that hadron triangle singularities, that can mock new exotic hadrons, can be significanttly suppressed in relativistic heavy ion collisions, provided two conditions are met: these are, first, that the fireball lives long eno ugh so that the triangle process has enough time to complete in the Norton-Coleman classical sense, and second, that the mass and/or width of the particles in the triangle diagram are sufficiently modified from their vacuum values. Here we add a very interesting example to the canon, which is $Y(4260) to D_1 D to pi D^* D to pi + J/psi pi$. This reaction has been proposed as a mechanism to explain the appearance of $Z_c(3900)$ in the $J/psi pi$ spectrum. If the two muons and two pions reconstructing the initial-state $Y$ can be isolated from the combinatorial background, then the mechanism can provide a spectroscopy test: presence of $Y(4260)$ but absence of $Z_c(3900)$ would be more indicative of such triangle mechanism, while presence of both would rather point out to $Z_c$ being an exotic hadron.
As a step toward performing a complete coupled-channels analysis of the world data of pi N, gamma^* N --> pi N, eta N, pi pi N reactions, the pi N --> pi pi N reactions are investigated starting with the dynamical coupled-channels model developed in Phys. Rev. C76, 065201 (2007). The channels included are pi N, eta N, and pi pi N which has pi Delta, rho N, and sigma N resonant components. The non-resonant amplitudes are generated from solving a set of coupled-channels equations with the meson-baryon potentials defined by effective Lagrangians. The resonant amplitudes are generated from 16 bare excited nucleon (N^*) states which are dressed by the non-resonant interactions as constrained by the unitarity condition. The data of total cross sections and pi N and pi pi invariant mass distributions of pi^+ p --> pi^+ pi^+ n, pi^+ pi^0p and pi^- p --> pi^+ pi^- n, pi^- pi^0 n, pi^0 pi^0 n reactions from threshold to the invariant mass W = 2 GeV can be described to a very large extent. We show the importance of the coupled-channels effects and the strong interference between the contributions from the pi Delta, sigma N, and rho N channels. The large interference between the resonant and non-resonant amplitudes is also demonstrated. Possible future developements are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا