ﻻ يوجد ملخص باللغة العربية
In this work we present a formal solution of the extended version of the Friedrichs Model. The Hamiltonian consists of discrete and continuum bosonic states, which are coupled to fermions. The simultaneous treatment of the couplings of the fermions with the discrete and continuous sectors of the bosonic degrees of freedom leads to a system of coupled equations, whose solutions are found by applying standard methods of representation of bound and resonant states.
In this work we present an extended version of the Friedrichs Model, which includes fermion-boson couplings. The set of fermion bound states is coupled to a boson field with discrete and continuous components. As a result of the coupling some of the
We derive the gauge covariance requirement imposed on the QED fermion-photon three-point function within the framework of a spectral representation for fermion propagators. When satisfied, such requirement ensures solutions to the fermion propagator
On the basis of the formalism proposed by three of the present authors (A.K., J.P.and M.Y.), generalized Lipkin model consisting of (M+1) single-particle levels is investigated. This model is essentially a kind of the su(M+1)-algebraic model and, in
Recent interest in spectroscopic factors for single-neutron transfer in low-spin states of the even-odd Xenon $^{125,127,129.131}$Xe and even-odd Tellurium, $^{123,125,127,129,131}$Te isotopes stimulated us to study these isotopes within the frame wo
The interpretation of the recently reported low-lying excited bands in $gamma$-soft odd-mass nuclei as wobbling bands is examined in terms of the interacting boson-fermion model that is based on the universal nuclear energy density functional. The pr