ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing effective nucleon-nucleon interaction at band termination

94   0   0.0 ( 0 )
 نشر من قبل Wojciech Satula
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Low-energy nuclear structure is not sensitive enough to resolve fine details of nucleon-nucleon (NN) interaction. Insensitivity of infrared physics to the details of short-range strong interaction allows for consistent, free of ultraviolet divergences, formulation of local theory at the level of local energy density functional (LEDF) including, on the same footing, both particle-hole as well as particle-particle channels. Major difficulty is related to parameterization of the nuclear LEDF and its density dependence. It is argued that structural simplicity of terminating or isomeric states offers invaluable source of informations that can be used for fine-tuning of the NN interaction in general and the nuclear LEDF parameters in particular. Practical applications of terminating states at the level of LEDF and nuclear shell-model are discussed.

قيم البحث

اقرأ أيضاً

We present two novel relations between the quasiparticle interaction in nuclear matter and the unique low momentum nucleon-nucleon interaction in vacuum. These relations provide two independent constraints on the Fermi liquid parameters of nuclear ma tter. Moreover, the new constraints define two combinations of Fermi liquid parameters, which are invariant under the renormalization group flow in the particle-hole channels. Using empirical values for the spin-independent Fermi liquid parameters, we are able to compute the major spin-dependent ones by imposing the new constraints as well as the Pauli principle sum rules.
145 - C. Maieron , V. De Donno , G Co 2009
We present a calculation of low energy magnetic states of doubly-closed-shell nuclei. Our results have been obtained within the random phase approximation using different nucleon-nucleon interactions, having zero- or finite-range and including a possible contribution in the tensor channel.
190 - R. Machleidt , I. Slaus 2001
We review the major progress of the past decade concerning our understanding of the nucleon-nucleon interaction. The focus is on the low-energy region (below pion production threshold), but a brief outlook towards higher energies is also given. The i tems discussed include charge-dependence, the precise value of the $pi NN$ coupling constant, phase shift analysis and high-precision NN data and potentials. We also address the issue of a proper theory of nuclear forces. Finally, we summarize the essential open questions that future research should be devoted to.
Distorted-wave methods are used to remove the effects of one- and two-pion exchange up to order Q^3 from the empirical 1P1 phase shift. The one divergence that arises can be renormalised using an order-Q^2 counterterm which is provided by the (Weinbe rg) power counting appropriate to the effective field theory for this channel. The residual interaction is used to estimate the scale of the underlying physics.
Some form of nonperturbative regularization is necessary if effective field theory treatments of the NN interaction are to yield finite answers. We discuss various regularization schemes used in the literature. Two of these methods involve formally i terating the divergent interaction and then regularizing and renormalizing the resultant amplitude. Either a (sharp or smooth) cutoff can be introduced, or dimensional regularization can be applied. We show that these two methods yield different results after renormalization. Furthermore, if a cutoff is used, the NN phase shift data cannot be reproduced if the cutoff is taken to infinity. We also argue that the assumptions which allow the use of dimensional regularization in perturbative EFT calculations are violated in this problem. Another possibility is to introduce a regulator into the potential before iteration and then keep the cutoff parameter finite. We argue that this does not lead to a systematically-improvable NN interaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا