ﻻ يوجد ملخص باللغة العربية
A parametrization of octupole plus quadrupole deformation, in terms of intrinsic variables defined in the rest frame of the overall tensor of inertia, is presented and discussed. The model is valid for situations close to the axial symmetry, but non axial deformation parameters are not frozen to zero. The properties of the octupole excitations in the deformed Thorium isotopes Th-226, Th-228 are interpreted in the frame of this model. A tentative interpretation of octupole oscillations in nuclei close to the X(5) symmetry, in terms of an exactly separable potential, is also discussed.
The dynamics of nuclear collective motion is investigated in the case of reflection-asymmetric shapes. The model is based on a new parameterization of the octupole and quadrupole degrees of freedom, valid for nuclei close to the axial symmetry. Ampli
The model, introduced in a previous paper, for the description of the octupole and quadrupole degrees of freedom in conditions close to the axial symmetry, is used to describe the negative-parity band based on the first octupole vibrational state in
The model, introduced in a previous paper, for the description of the octupole and quadrupole degrees of freedom in conditions close to the axial symmetry, is applied to situations of shape phase transitions where the quadrupole amplitude can reach z
The evolution of quadrupole and octupole collectivity and their coupling is investigated in a series of even-even isotopes of the actinide Ra, Th, U, Pu, Cm, and Cf with neutron number in the interval $130leqslant Nleqslant 150$. The Hartree-Fock-Bog
The 150Sm nucleus has been studied to high spins in a measurement of gamma radiation following the 136Xe(18O,4n)150Sm, compound-nucleus reaction at beam energy of 76 MeV. The measurement was performed at NBI Riso using the NORDBALL array. Alternating