ﻻ يوجد ملخص باللغة العربية
We use the Nambu-Jona-Lasinio model as an effective quark theory to investigate the medium modifications of the nucleon electromagnetic form factors. By using the equation of state of nuclear matter derived in this model, we discuss the results based on the naive quark-scalar diquark picture, the effects of finite diquark size, and the meson cloud around the constituent quarks. We apply this description to the longitudinal response function for quasielastic electron scattering. RPA correlations, based on the nucleon-nucleon interaction derived in the same model, are also taken into account in the calculation of the response function.
Effects of the in-medium modifications of nucleon form factors on neutrino interaction in dense matter are presented by considering both the weak and electromagnetic interactions of neutrinos with the constituents of the matter. A relativistic mean f
A dressed-quark core contribution to nucleon electromagnetic form factors is calculated. It is defined by the solution of a Poincare covariant Faddeev equation in which dressed-quarks provide the elementary degree of freedom and correlations between
The role of the strange quarks on the low-energy interactions of the proton can be probed through the strange electromagnetic form factors. Knowledge of these form factors provides essential input for parity-violating processes and contributes to the
We compute nucleon and Roper e.m. elastic and transition form factors using a symmetry-preserving treatment of a contact-interaction. Obtained thereby, the e.m. interactions of baryons are typically described by hard form factors. In contrasting this
We present a study of the electromagnetic structure of the nucleons with constituent quark models in the framework of relativistic quantum mechanics. In particular, we address the construction of spectator-model currents in the instant and point form