ﻻ يوجد ملخص باللغة العربية
A particular three-body mechanism is responsible for the missing strength which has been reported in $^3$He(e,e$$p) reactions at missing momentum above 700 MeV/c. It corresponds to the absorption of the virtual photon by a nucleon at rest which subsequently propagates on-shell and emits a meson which is reabsorbed by the pair formed by the two other nucleons. Its amplitude, which is negligible in photon induced reactions as well as in the electro-production of an on-shell meson, becomes maximal in the quasi-free kinematics (X=1). It relates the amplitude of the $^3$He(e,e$$p)D reaction to the amplitude of $pD$ elastic scattering at backward angles.
The five-fold differential cross section for the 12C(e,ep)11B reaction was determined over a missing momentum range of 200-400 MeV/c, in a kinematics regime with Bjorken x > 1 and Q2 = 2.0 (GeV/c)2. A comparison of the results and theoretical models
The possibility to extract relevant information on spectroscopic factors from (e,e$$p) reactions at high $Q^2$ is studied. Recent ${}^{16}$O(e,e$$p) data at $Q^2 = 0.8$ (GeV/$c)^2$ are compared to a theoretical approach which includes an eikonal desc
We measured the 12C(e,ep) cross section as a function of missing energy in parallel kinematics for (q,w) = (970 MeV/c, 330 MeV) and (990 MeV/c, 475 MeV). At w=475 MeV, at the maximum of the quasielastic peak, there is a large continuum (E_m > 50 MeV)
A linked cluster expansion for the distorted one-body mixed density matrix is obtained within the Glauber multiple scattering theory with correlated wave functions. The nuclear transparency for 16O is calculated using realistic central and non-centra
Experimental cross sections for the $^4He(e,ep)X$ reaction up to a missing momentum of 0.632 GeV/$c$ at $x_B=1.24$ and $Q^2$=2(GeV/$c$)$^2$ are reported. The data are compared to Relativistic Distorted Wave Impulse Approximation(RDWIA) calculations f