ﻻ يوجد ملخص باللغة العربية
Using effective formulas we analyze the Bose-Einstein correlations (BEC) data corrected for Coulomb interactions provided by STAR Collaboration and the quasi-corrected data (raw data with acceptance correction etc) on 2pi and 3pi BEC by using Coulomb wave function with coherence parameter included. The corresponding magnitudes of the interaction regions turn out to be almost the same: R_{Coul}(2pi) simeq frac 32R_{Coul}(3pi). R_{Coul} means the size of interaction region obtained in terms of Coulomb wave function. This approximate relation is also confirmed by the core-halo model. Moreover, the genuine 3rd order term of BEC has also been investigated in this framework and its magnitude has been estimated both in the fully corrected data and in the quasi-corrected data.
A wavepacket model for a system of free pions, which takes into account the full permutation symmetry of the wavefunction and which is suitable for any phase space parametrization is developed. The properties of the resulting mixed ensembles and the
Results are presented of a two-pion interferometry (HBT) analysis in Pb+Au collisions at 40, 80, and 158 AGeV. A detailed study of the Bertsch-Pratt HBT radius parameters has been performed as function of the mean pair transverse momentum $k_t$ and i
In order to include a correction by the Coulomb interaction in Bose-Einstein correlations (BEC), the wave function for the Coulomb scattering were introduced in the quantum optical approach to BEC in the previous work. If we formulate the amplitude w
We present an analytical formula for the Bose-Einstein correlations (BEC) which includes effects of both Coulomb and strong final stateinteractions (FSI). It was obtained by using Coulomb wave function together with the scattering partial wave amplit
Two- and three-pion correlations are investigated in cases when disoriented chiral condensate (DCC) occurs. A chaoticity and weight factor are used as measures of two- and three-pion correlations, and the various models for DCC are investigated. Some