ﻻ يوجد ملخص باللغة العربية
We study the sensitivity of neutral-current neutrino-nucleus scattering to the strange-quark content of the axial-vector form factor of the nucleon. A model-independent formalism for this reaction is developed in terms of eight nuclear structure functions. Taking advantage of the insensitivity of the ratio of proton $( u, u p)$ to neutron $( u, u n)$ yields to distortion effects, we compute all structure functions in a relativistic plane wave impulse approximation approach. Further, by employing the notion of a bound-state nucleon propagator, closed-form, analytic expressions for all nuclear-structure functions are developed in terms of an accurately calibrated relativistic mean-field model. Using a strange-quark contribution to the axial-vector form factor of $g_{A}^{s}=-0.19$, a significant enhancement in the proton-to-neutron yields is observed relative to one with $g_{A}^{s}=0$.
The neutral-current neutrino-nucleus scattering is calculated through the neutrino-induced knocked-out nucleon process in the quasielastic region by using a relativistic single particle model for the bound and continuum states. The incident energy ra
Nuclear model effects in neutrino-nucleus quasielastic scattering are studied within the distorted wave impulse approximation, using a relativistic shell model to describe the nucleus, and comparing it with the relativistic Fermi gas. Both charged-cu
The axial form factor plays a crucial role in quasielastic neutrino-nucleus scattering, but the error of the theoretical cross section due to uncertainties of $G_A$ remains to be established. Reversely, the extraction of $G_A$ from the neutrino nucle
We consider the charged-current quasielastic scattering of muon neutrinos on an Oxygen 16 target, described within a relativistic shell model and, for comparison, the relativistic Fermi gas. Final state interactions are described in the distorted wav
Quasielastic K^+ - nucleus scattering data at q=290, 390 and 480 MeV/c are analyzed in a finite nucleus continuum random phase approximation framework, using a density-dependent particle-hole interaction. The reaction mechanism is consistently treate