ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for nonhadronic degrees of freedom in the transverse mass spectra of kaons from relativistic nucleus-nucleus collisions?

81   0   0.0 ( 0 )
 نشر من قبل Elena Bratkovskaya L.
 تاريخ النشر 2003
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate transverse hadron spectra from relativistic nucleus-nucleus collisions which reflect important aspects of the dynamics - such as the generation of pressure - in the hot and dense zone formed in the early phase of the reaction. Our analysis is performed within two independent transport approaches (HSD and UrQMD) that are based on quark, diquark, string and hadronic degrees of freedom. Both transport models show their reliability for elementary $pp$ as well as light-ion (C+C, Si+Si) reactions. However, for central Au+Au (Pb+Pb) collisions at bombarding energies above $sim$ 5 A$cdot$GeV the measured $K^{pm}$ transverse mass spectra have a larger inverse slope parameter than expected from the calculation. Thus the pressure generated by hadronic interactions in the transport models above $sim$ 5 A$cdot$GeV is lower than observed in the experimental data. This finding shows that the additional pressure - as expected from lattice QCD calculations at finite quark chemical potential and temperature - is generated by strong partonic interactions in the early phase of central Au+Au (Pb+Pb) collisions.

قيم البحث

اقرأ أيضاً

The Parton-Hadron-String-Dynamics (PHSD) transport model is used to study the impact on the choice of initial degrees of freedom on the final hadronic and electromagnetic observables in Au+Au collisions at $sqrt{s_{NN}}$ = 200 GeV. We find that a non -perturbative system of massive gluons (scenario I) and a system dominated by quarks and antiquarks (scenario II) lead to different hadronic observables when imposing the same initial energy-momentum tensor $T_{mu u}(x)$ just after the passage of the impinging nuclei. In case of the gluonic initial condition the formation of $s,{bar s}$ pairs in the QGP proceeds rather slow such that the anti-strange quarks and accordingly the $K^+$ mesons do not achieve chemical equilibrium even in central Au+Au collisions at $sqrt{s_{NN}}$ = 200 GeV. Accordingly, the $K^+$ rapidity distribution is suppressed in the gluonic scenario and in conflict with the data from the BRAHMS Collaboration. The proton and antiproton rapidity distributions also disfavor the scenario I. Furthermore, a clear suppression of direct photon and dilepton production is found for the pure gluonic initial conditions which is not so clearly seen in the present photon and dilepton spectra from Au+Au collisions at $sqrt{s_{NN}}$ = 200 GeV due to a large contribution from other channels. It is argued that dilepton spectra in the invariant mass range 1.2 GeV $< M <$ 3 GeV will provide a definitive answer once the background from correlated $D$-meson decays is subtracted experimentally.
We investigate hadron production as well as transverse hadron spectra from proton-proton, proton-nucleus and nucleus-nucleus collisions from 2 $Acdot$GeV to 21.3 $Acdot$TeV within two independent transport approaches (HSD and UrQMD) that are based on quark, diquark, string and hadronic degrees of freedom. The comparison to experimental data on transverse mass spectra from $pp$, $pA$ and C+C (or Si+Si) reactions shows the reliability of the transport models for light systems. For central Au+Au (Pb+Pb) collisions at bombarding energies above $sim$ 5 A$cdot$GeV, furthermore, the measured $K^{pm}$ transverse mass spectra have a larger inverse slope parameter than expected from the default calculations. We investigate various scenarios to explore their potential effects on the $K^pm$ spectra. In particular the initial state Cronin effect is found to play a substantial role at top SPS and RHIC energies. However, the maximum in the $K^+/pi^+$ ratio at 20 to 30 A$cdot$GeV is missed by ~40% and the approximately constant slope of the $K^pm$ spectra at SPS energies is not reproduced either. Our systematic analysis suggests that the additional pressure - as expected from lattice QCD calculations at finite quark chemical potential $mu_q$ and temperature $T$- should be generated by strong interactions in the early pre-hadronic/partonic phase of central Au+Au (Pb+Pb) collisions.
The partition function of nonequilibrium distribution which we recently obtained [arXiv:0802.0259] in the framework of the maximum isotropization model (MIM) is exploited to extract physical information from experimental data on the proton rapidity a nd transverse mass distributions. We propose to partition all interacting nucleons into ensembles in accordance with the number of collisions. We analyze experimental rapidity distribution and get the number of particles in every collision ensemble. We argue that even a large number of effective nucleon collisions cannot lead to thermalization of nucleon system; the thermal source which describes the proton distribution in central rapidity region arises as a result of fast thermalization of the parton degrees of freedom. The obtained number of nucleons which corresponds to the thermal contribution is treated as a ``nucleon power of the created quark-gluon plasma in a particular experiment.
The collision smearing of the nucleon momenta about their initial values during relativistic nucleus-nucleus collisions is investigated. To a certain degree, our model belongs to the transport type, and we investigate the evolution of the nucleon sys tem created at a nucleus-nucleus collision. However, we parameterize this development by the number of collisions of every particle during evolution rather than by the time variable. It is assumed that the group of nucleons which leave the system after the same number of collisions can be joined in a particular statistical ensemble. The nucleon nonequilibrium distribution functions, which depend on a certain number of collisions of a nucleon before freeze-out, are derived.
88 - D. Anchishkin 2012
The space-time structure of the multipion system created in central relativistic heavy-ion collisions is investigated. Using the microscopic transport model UrQMD we determine the freeze-out hypersurface from equation on pion density n(t,r)=n_c. It t urns out that for proper value of the critical energy density epsilon_c equation epsilon(t,r)=epsilon_c gives the same freeze-out hypersurface. It is shown that for big enough collision energies E_kin > 40A GeV/c (sqrt(s) > 8A GeV/c) the multipion system at a time moment {tau} ceases to be one connected unit but splits up into two separate spatial parts (drops), which move in opposite directions from one another with velocities which approach the speed of light with increase of collision energy. This time {tau} is approximately invariant of the collision energy, and the corresponding tau=const. hypersurface can serve as a benchmark for the freeze-out time or the transition time from the hydrostage in hybrid models. The properties of this hypersurface are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا