ﻻ يوجد ملخص باللغة العربية
We derive a microscopic relativistic point-coupling model of nuclear many-body dynamics constrained by in-medium QCD sum rules and chiral symmetry. The effective Lagrangian is characterized by density dependent coupling strengths, determined by chiral one- and two-pion exchange and by QCD sum rule constraints for the large isoscalar nucleon self-energies that arise through changes of the quark condensate and the quark density at finite baryon density. This approach is tested in the analysis of the equations of state for symmetric and asymmetric nuclear matter, and of bulk and single-nucleon properties of finite nuclei. In comparison with purely phenomenological mean-field approaches, the built-in QCD constraints and the explicit treatment of pion exchange restrict the freedom in adjusting parameters and functional forms of density dependent couplings. It is shown that chiral (two-pion exchange) fluctuations play a prominent role for nuclear binding and saturation, whereas strong scalar and vector fields of about equal magnitude and opposite sign, induced by changes of the QCD vacuum in the presence of baryonic matter, generate the large effective spin-orbit potential in finite nuclei.
The effective chiral model is extended by introducing the contributions from the cross-couplings between isovector and isoscalar mesons. These cross-couplings are found to be instrumental in improving the density content of the nuclear symmetry energ
We have calculated the properties of nuclear matter in a self-consistent manner with quark-meson coupling mechanism incorporating structure of nucleons in vacuum through a relativistic potential model; where the dominant confining interaction for the
We review the main achievements of the research programme for the study of nuclear forces in the framework of chiral symmetry and discuss some problems which are still open.
We examine critically how tightly the density dependence of nuclear symmetry energy esym is constrained by the universal equation of state (EOS) of the unitary Fermi gas $E_{rm{UG}}(rho)$ considering currently known uncertainties of higher order para
We derive a single-channel effective Kbar N interaction from chiral SU(3) coupled-channel dynamics, emphasizing the important role of the pi Sigma channel and the structure of the Lambda(1405) resonance. The chiral low energy theorem requires strongl