ترغب بنشر مسار تعليمي؟ اضغط هنا

Relativistic nuclear model with point-couplings constrained by QCD and chiral symmetry

65   0   0.0 ( 0 )
 نشر من قبل Paolo Finelli
 تاريخ النشر 2003
  مجال البحث
والبحث باللغة English
 تأليف P. Finelli




اسأل ChatGPT حول البحث

We derive a microscopic relativistic point-coupling model of nuclear many-body dynamics constrained by in-medium QCD sum rules and chiral symmetry. The effective Lagrangian is characterized by density dependent coupling strengths, determined by chiral one- and two-pion exchange and by QCD sum rule constraints for the large isoscalar nucleon self-energies that arise through changes of the quark condensate and the quark density at finite baryon density. This approach is tested in the analysis of the equations of state for symmetric and asymmetric nuclear matter, and of bulk and single-nucleon properties of finite nuclei. In comparison with purely phenomenological mean-field approaches, the built-in QCD constraints and the explicit treatment of pion exchange restrict the freedom in adjusting parameters and functional forms of density dependent couplings. It is shown that chiral (two-pion exchange) fluctuations play a prominent role for nuclear binding and saturation, whereas strong scalar and vector fields of about equal magnitude and opposite sign, induced by changes of the QCD vacuum in the presence of baryonic matter, generate the large effective spin-orbit potential in finite nuclei.



قيم البحث

اقرأ أيضاً

The effective chiral model is extended by introducing the contributions from the cross-couplings between isovector and isoscalar mesons. These cross-couplings are found to be instrumental in improving the density content of the nuclear symmetry energ y. The nuclear symmetry energy as well as its slope and curvature parameters at the saturation density are in harmony with those deduced from a diverse set of experimental data. The equation of state for pure neutron matter at sub-saturation densities is also in accordance with the ones obtained from different microscopic models. The maximum mass of neutron star is consistent with the measurement and the radius at the canonical mass of the neutron star is within the empirical bounds.
We have calculated the properties of nuclear matter in a self-consistent manner with quark-meson coupling mechanism incorporating structure of nucleons in vacuum through a relativistic potential model; where the dominant confining interaction for the free independent quarks inside a nucleon, is represented by a phenomenologically average potential in equally mixed scalar-vector harmonic form. Corrections due to spurious centre of mass motion as well as those due to other residual interactions such as the one gluon exchange at short distances and quark-pion coupling arising out of chiral symmetry restoration; have been considered in a perturbation manner to obtain the nucleon mass in vacuum. The nucleon-nucleon interaction in nuclear matter is then realized by introducing additional quark couplings to sigma and omega mesons through mean field approximations. The relevant parameters of the interaction are obtained self consistently while realizing the saturation properties such as the binding energy, pressure and compressibility of the nuclear matter. We also discuss some implications of chiral symmetry in nuclear matter along with the nucleon and nuclear sigma term and the sensitivity of nuclear matter binding energy with variations in the light quark mass.
We review the main achievements of the research programme for the study of nuclear forces in the framework of chiral symmetry and discuss some problems which are still open.
We examine critically how tightly the density dependence of nuclear symmetry energy esym is constrained by the universal equation of state (EOS) of the unitary Fermi gas $E_{rm{UG}}(rho)$ considering currently known uncertainties of higher order para meters describing the density dependence of the Equation of State of isospin-asymmetric nuclear matter. We found that $E_{rm{UG}}(rho)$ does provide a useful lower boundary for the esym. However, it does not tightly constrain the correlation between the magnitude $E_{rm{sym}}(rho_0)$ and slope $L$ unless the curvature $K_{rm{sym}}$ of the symmetry energy at saturation density $rho_0$ is more precisely known. The large uncertainty in the skewness parameters affects the $E_{rm{sym}}(rho_0)$ versus $L$ correlation by the same almost as significantly as the uncertainty in $K_{rm{sym}}$.
We derive a single-channel effective Kbar N interaction from chiral SU(3) coupled-channel dynamics, emphasizing the important role of the pi Sigma channel and the structure of the Lambda(1405) resonance. The chiral low energy theorem requires strongl y attractive interaction not only in the Kbar N channel but also in the pi Sigma channel. As a consequence of the strong pi Sigma dynamics, the equivalent potential in single Kbar N channel turns out to be less attractive than the one used in a purely phenomenological approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا