ﻻ يوجد ملخص باللغة العربية
The nuclear matrix elements $M^{0 u}$ of the neutrinoless double beta decay ($0 ubetabeta$) are evaluated for $^{76}$Ge,$^{100}$Mo, $^{130}$Te, and $^{136}$Xe within the Renormalized Quasiparticle Random Phase Approximation (RQRPA) and the simple QRPA. Three sets of single particle level schemes are used, ranging in size from 9 to 23 orbits. When the strength of the particle-particle interaction is adjusted so that the $2 ubetabeta$ decay rate is correctly reproduced, the resulting $M^{0 u}$ values become essentially independent on the size of the basis, and on the form of different realistic nucleon-nucleon potentials. Thus, one of the main reasons for variability of the calculated $M^{0 u}$ within these methods is eliminated.
The nuclear matrix elements $M^{0 u}$ of the neutrinoless double beta decay ($0 ubetabeta$) of most nuclei with known $2 ubetabeta$-decay rates are systematically evaluated using the Quasiparticle Random Phase Approximation (QRPA) and Renormalized QR
We examine the leading effects of two-body weak currents from chiral effective field theory on the matrix elements governing neutrinoless double-beta decay. In the closure approximation these effects are generated by the product of a one-body current
This is an erratum to our previously published paper.
The $lambda$ and $m_{betabeta}$ mechanisms of neutrinoless double beta decay ($0 ubetabeta$) occur with light neutrino exchange via $W_L-W_R$, and $W_L-W_L$ mediation, respectively. In the present study, we calculate the nuclear matrix elements (NMEs
Recent progress in nuclear-structure theory has been dramatic. I describe recent and future applications of ab initio calculations and the generator coordinate method to double-beta decay. I also briefly discuss the old and vexing problem of the reno