ﻻ يوجد ملخص باللغة العربية
Direct neutron capture on 62Ni is calculated in the DWBA and the cross sections in the energy range relevant for s-process nucleosynthesis are given. It is confirmed that the thermal value of the capture cross section contains a subthreshold resonance contribution. Contrary to previous investigations it is found that the capture at higher energies is dominated by p-waves, thus leading to a considerably increased cross section at s-process energies and a modified energy dependence.
Alternative methods to calculate neutron capture cross sections on radioactive nuclei are reported using the theory of Inclusive Non-Elastic Breakup (INEB) developed by Hussein and McVoy [1]. The statistical coupled-channels theory proposed in Ref. [
The rapid neutron-capture process ($r$-process) has for the first time been confirmed to take place in a neutron-star merger event. A detailed understanding of the rapid neutron-capture process is one of the holy grails in nuclear astrophysics. In th
Measurements of neutron total cross-sections are both extensive and extremely accurate. Although they place a strong constraint on theoretically constructed models, there are relatively few comparisons of predictions with experiment. The total cross-
Results for the $pi + N to Lambda, Sigma + K$ reactions in nuclear matter of Ref. nucl-th/0004011 are presented. To evaluate the in-medium modification of the reaction amplitude as a function of the baryonic density we introduce relativistic, mean-fi
Simulations of r-process nucleosynthesis require nuclear physics information for thousands of neutron-rich nuclear species from the line of stability to the neutron drip line. While arguably the most important pieces of nuclear data for the r-process