ترغب بنشر مسار تعليمي؟ اضغط هنا

Gauge and Lorentz invariant one-pion exchange currents in electron scattering from a relativistic Fermi gas

46   0   0.0 ( 0 )
 نشر من قبل Jose E. Amaro
 تاريخ النشر 2002
  مجال البحث
والبحث باللغة English
 تأليف J.E. Amaro




اسأل ChatGPT حول البحث

A consistent analysis of relativistic pionic correlations and meson-exchange currents for electroweak quasielastic electron scattering from nuclei is carried out. Fully-relativistic one-pion-exchange electromagnetic operators are developed for use in one-particle emission electronuclear reactions within the context of the relativistic Fermi gas model. Then the exchange and pionic correlation currents are set up fully respecting the gauge invariance of the theory. Emphasis is placed on the self-energy current which, being infinite, needs to be renormalized. This is achieved starting in the Hartree-Fock framework and then expanding the Hartree-Fock current to first order in the square of the pion coupling constant to obtain a truly, gauge invariant, one-pion-exchange current. The model is applied to the calculation of the parity-conserving (PC) and parity-violating (PV) inclusive responses of nuclei. Interestingly, in the pionic correlations terms exist which arise uniquely from relativity, although their impact on the responses is found to be modest.

قيم البحث

اقرأ أيضاً

75 - M.B. Barbaro 2002
The role of the pion in the parity-conserving and parity-violating quasi-elastic nuclear response functions is analyzed within a relativistic model which fulfills gauge invariance.
We reanalyze the scaling properties of inclusive quasielastic electron scattering from $^{12}$C by subtracting from the data the effects of two-particle emission. A model of relativistic meson-exchange currents (MEC) is employed within the mean field theory of nuclear matter, with scalar and vector potentials that induce an effective mass and a vector energy to the nucleons. A new phenomenological quasielastic scaling function is extracted from a selection of the data after the subtraction of the 2p-2h contribution. The resulting superscaling approach with relativistic effective mass (SuSAM*) can be used to compute the genuine quasielastic cross section without contamination of the 2p-2h channel that can then be added separately to obtain the total quasielastic plus two-nucleon emission response.
We develop a model of relativistic, charged meson-exchange currents (MEC) for neutrino-nucleus interactions. The two-body current is the sum of seagull, pion-in-flight, pion-pole and $Delta$-pole operators. These operators are obtained from the weak pion-production amplitudes for the nucleon derived in the non-linear $sigma$-model together with weak excitation of the $Delta(1232)$ resonance and its subsequent decay into $Npi$. With these currents we compute the five 2p-2h response functions contributing to $( u_l,l^-)$ and $(overline{ u}_l,l^+)$ reactions in the relativistic Fermi gas model. The total current is the sum of vector and axial two-body currents. The vector current is related to the electromagnetic MEC operator that contributes to electron scattering. This allows one to check our model by comparison with the results of De Pace {em et al.,} Nuclear Physics A 726 (2003) 303. Thus our model is a natural extension of that model to the weak sector with the addition of the axial MEC operator. The dependences of the response functions on several ingredients of the approach are analyzed. Specifically we discuss relativistic effects, quantify the size of the direct-exchange interferences, and the relative importance of the axial versus vector current.
Chiral effective field theory (ChEFT) is a modern framework to analyze the properties of few-nucleon systems at low energies. It is based on the most general effective Lagrangian for pions and nucleons consistent with the chiral symmetry of QCD. For energies below the pion-production threshold it is possible to eliminate the pionic degrees of freedom and derive nuclear potentials and nuclear current operators solely in terms of the nucleonic degrees of freedom. This is very important because, despite a lot of experience gained in the past, the consistency between two-nucleon forces, many-nucleon forces and the corresponding current operators has not been achieved yet. In this presentation we consider the recently derived long-range two-pion exchange (TPE) contributions to the nuclear current operator which appear at next-to leading order of the chiral expansion. These operators do not contain any free parameters. We study their role in the deuteron photodisintegration reaction and compare our predictions with experimental data. The bound and scattering states are calculated using five different chiral N2LO nucleon-nucleon (NN) potentials which allows to estimate the theoretical uncertainty at a given order in the chiral expansion. For some observables the results are very close to the reference predictions based on the AV18 NN potential and the current operator (partly) consistent with this force.
Two-particle two-hole contributions to electromagnetic response functions are computed in a fully relativistic Fermi gas model. All one-pion exchange diagrams that contribute to the scattering amplitude in perturbation theory are considered, includin g terms for pionic correlations and meson-exchange currents (MEC). The pionic correlation terms diverge in an infinite system and thus are regularized by modification of the nucleon propagator in the medium to take into account the finite size of the nucleus. The pionic correlation contributions are found to be of the same order of magnitude as the MEC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا