ترغب بنشر مسار تعليمي؟ اضغط هنا

Redundant Components in the 3 alpha Faddeev Equation Using 2 alpha RGM Kernel

80   0   0.0 ( 0 )
 نشر من قبل Yoshikazu FujiwaraY
 تاريخ النشر 2002
  مجال البحث
والبحث باللغة English
 تأليف Y. Fujiwara




اسأل ChatGPT حول البحث

The 3 alpha Faddeev equation using 2 alpha RGM kernel involves redundant components whose contribution to the total wave function completely cancels out. We propose a practical method to solve this Faddeev equation, by eliminating the admixture of such redundant components. A complete equivalence between the present Faddeev approach and a variational approach using the translationally invariant harmonic-oscillator basis is numerically shown with respect to the 3 alpha bound state corresponding to the ground state of 12C.

قيم البحث

اقرأ أيضاً

The 3 alpha orthogonality condition model using the Pauli-forbidden bound states of the Buck, Friedlich and Wheatly alpha alpha potential can yield a compact 3 alpha ground state with a large binding energy, in which a small admixture of the redundant components can never be eliminated.
100 - Y. Fujiwara 2004
We carry out Faddeev calculations of three-alpha (3 alpha) and two-alpha plus Lambda (alpha alpha Lambda) systems, using two-cluster resonating-group method kernels. The input includes an effective two-nucleon force for the alpha alpha resonating-gro up method and a new effective Lambda N force for the Lambda alpha interaction. The latter force is a simple two-range Gaussian potential for each spin-singlet and triplet state, generated from the phase-shift behavior of the quark-model hyperon-nucleon interaction, fss2, by using an inversion method based on supersymmetric quantum mechanics. Owing to the exact treatment of the Pauli-forbidden states between the clusters, the present three-cluster Faddeev formalism can describe the mutually related, alpha alpha, 3 alpha and alpha alpha Lambda systems, in terms of a unique set of the baryon-baryon interactions. For the three-range Minnesota force which describes the alpha alpha phase shifts quite accurately, the ground-state and excitation energies of 9Be Lambda are reproduced within 100 - 200 keV accuracy.
91 - Y. Fujiwara 2001
We propose a new type of three-cluster equation which uses two-cluster resonating-group-method (RGM) kernels. In this equation, the orthogonality of the total wave-function to two-cluster Pauli-forbidden states is essential to eliminate redundant com ponents admixed in the three-cluster systems. The explicit energy-dependence inherent in the exchange RGM kernel is self-consistently determined. For bound-state problems, this equation is straightforwardly transformed to the Faddeev equation which uses a modified singularity-free T-matrix constructed from the two-cluster RGM kernel. The approximation of the present three-cluster formalism can be examined with more complete calculation using the three-cluster RGM. As a simple example, we discuss three di-neutron (3d) and 3 alpha systems in the harmonic-oscillator variational calculation. The result of the Faddeev calculation is also presented for the 3 system.
188 - L. Hlophe , Jin Lei , Ch. Elster 2019
{bf Background} Deuteron induced reactions are widely used to probe nuclear structure and astrophysical information. Those (d,p) reactions may be viewed as three-body reactions and described with Faddeev techniques. {bf Purpose} Faddeev-AGS equatio ns in momentum space have a long tradition of utilizing separable interactions in order to arrive at sets of coupled integral equations in one variable. However, it needs to be demonstrated that observables calculated based on separable interactions agree exactly with those based on nonseparable forces. {bf Methods} Momentum space AGS equations are solved with separable and nonseparable forces as coupled integral equations. {bf Results} Deuteron-alpha scattering is calculated via momentum space AGS equations using the CD-Bonn neutron-proton force and a Woods-Saxon type neutron(proton)-$^4$He force, for which the Pauli-forbidden S-wave bound state is projected out. Elastic as well as breakup observables are calculated and compared to results in which the interactions in the two-body sub-systems are represented by separable interactions derived in the Ernst-Shakin-Thaler (EST) framework. {bf Conclusions} We find that the calculations based on the separable representation of the interactions and the original interactions give results that are in excellent agreement. Specifically, integrated cross sections and angular distributions for elastic scattering agree within $approx$ 1%, which is well below typical experimental errors. In addition, the five-fold differential cross sections corresponding to breakup of the deuteron agree extremely well.
The fishbone potential of composite particles simulates the Pauli effect by nonlocal terms. We determine the $alpha-alpha$ fishbone potential by simultaneously fitting to two-$alpha$ resonance energies, experimental phase shifts and three-$alpha$ bin ding energies. We found that essentially a simple gaussian can provide a good description of two-$alpha$ and three-$alpha$ experimental data without invoking three-body potentials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا