ترغب بنشر مسار تعليمي؟ اضغط هنا

A statistical interpretation of the correlation between intermediate mass fragment multiplicity and transverse energy

44   0   0.0 ( 0 )
 نشر من قبل Larry Phair
 تاريخ النشر 1999
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Multifragment emission following Xe+Au collisions at 30, 40, 50 and 60 AMeV has been studied with multidetector systems covering nearly 4-pi in solid angle. The correlations of both the intermediate mass fragment and light charged particle multiplicities with the transverse energy are explored. A comparison is made with results from a similar system, Xe+Bi at 28 AMeV. The experimental trends are compared to statistical model predictions.

قيم البحث

اقرأ أيضاً

75 - B. Davin 2002
The defining characteristics of fragment emission resulting from the non-central collision of 114Cd ions with 92Mo target nuclei at E/A = 50 MeV are presented. Charge correlations and average relative velocities for mid-velocity fragment emission exh ibit significant differences when compared to standard statistical decay. These differences associated with similar velocity dissipation are indicative of the influence of the entrance channel dynamics on the fragment production process.
We review the charged particle and photon multiplicity, and transverse energy production in heavy-ion collisions starting from few GeV to TeV energies. The experimental results of pseudorapidity distribution of charged particles and photons at differ ent collision energies and centralities are discussed. We also discuss the hypothesis of limiting fragmentation and expansion dynamics using the Landau hydrodynamics and the underlying physics. Meanwhile, we present the estimation of initial energy density multiplied with formation time as a function of different collision energies and centralities. In the end, the transverse energy per charged particle in connection with the chemical freeze-out criteria is discussed. We invoke various models and phenomenological arguments to interpret and characterize the fireball created in heavy-ion collisions. This review overall provides a scope to understand the heavy-ion collision data and a possible formation of a deconfined phase of partons via the global observables like charged particles, photons and the transverse energy measurement.
89 - Aurel Bulgac 2021
It is shown that the unexpected character of the angular correlation between the angle of the primary fission fragment intrinsic spins, recently evaluated by performing very complex time-dependent density functional simulations, which favors fission fragment intrinsic spins pointing in opposite directions, can be understood using simple general arguments.
Low-energy pi+ (E < 35 MeV) from 12C+197Au collisions at incident energies from 300 to 1800 MeV per nucleon were detected with the Si-Si(Li)-CsI(Tl) calibration telescopes of the INDRA multidetector. The inclusive angular distributions are approximat ely isotropic, consistent with multiple rescattering in the target spectator. The multiplicity correlations of the low-energy pions and of energetic protons (E > 150 MeV) with intermediate-mass fragments were determined from the measured coincidence data. The deduced correlation functions 1 + R approx 1.3 for inclusive event samples reflect the strong correlations evident from the common impact-parameter dependence of the considered multiplicities. For narrow impact-parameter bins (based on charged-particle multiplicity), the correlation functions are close to unity and do not indicate strong additional correlations. Only for pions at high particle multiplicities (central collisions) a weak anticorrelation is observed, probably due to a limited competition between these emissions. Overall, the results are consistent with the equilibrium assumption made in statistical multifragmentation scenarios. Predictions obtained with intranuclear cascade models coupled to the Statistical Multifragmentation Model are in good agreement with the experimental data.
175 - A.E. Lovell , I. Stetcu , P. Talou 2019
We propose a novel method to extract the prompt neutron multiplicity distribution, $P( u)$, in fission reactions based on correlations between prompt neutrons, $gamma$ rays, and fragment kinetic energy arising from energy conservation. In this approa ch, only event-by-event measurements of the total $gamma$-ray energy released as a function of the total kinetic energy (TKE) of the fission fragments are performed, and no neutron detection is required. Using the $texttt{CGMF}$ fission event generator, we illustrate the method and explore the accuracy of extracting the neutron multiplicity distribution when taking into account the energy resolution and calibration of the energy measurements. We find that a TKE resolution of under 2 MeV produces reasonably accurate results, independent of typical $gamma$-ray energy measurement resolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا