ترغب بنشر مسار تعليمي؟ اضغط هنا

Onset of Collectivity in Neutron Deficient $^{196,198}$Po

80   0   0.0 ( 0 )
 نشر من قبل Elaine Remillard
 تاريخ النشر 1995
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied via in-beam $gamma$-ray spectroscopy $^{196}$Po and $^{198}$Po, which are the first neutron-deficient Po isotopes to exhibit a collective low-lying structure. The ratios of yrast state energies and the E2 branching ratios of transitions from non-yrast to yrast states are indicative of a low-lying vibrational structure. The onset of collective motion in these isotopes can be attributed to the opening of the neutron i$_{13/2}$ orbital at N$approx$112 and the resulting large overlap between the two valence protons in the h$_{9/2}$ orbital and the valence neutrons in the i$_{13/2}$ orbital.

قيم البحث

اقرأ أيضاً

In-source resonant ionization laser spectroscopy of the even-$A$ polonium isotopes $^{192-210,216,218}$Po has been performed using the $6p^37s$ $^5S_2$ to $6p^37p$ $^5P_2$ ($lambda=843.38$ nm) transition in the polonium atom (Po-I) at the CERN ISOLDE facility. The comparison of the measured isotope shifts in $^{200-210}$Po with a previous data set allows to test for the first time recent large-scale atomic calculations that are essential to extract the changes in the mean-square charge radius of the atomic nucleus. When going to lighter masses, a surprisingly large and early departure from sphericity is observed, which is only partly reproduced by Beyond Mean Field calculations.
We report on the experimental study of quadrupole collectivity in the neutron-deficient nucleus uc{104}{Sn} using intermediate-energy Coulomb excitation. The $B(E2; 0^+_1 rightarrow 2^+_1)$ value for the excitation of the first $2^+$ state in uc{10 4}{Sn} has been measured to be $0.180(37)~e^2$b$^2$ relative to the well-known $B(E2)$ value of uc{102}{Cd}. This result disagrees by more than one sigma with a recently published measurement cite{Gua13}. Our result indicates that the most modern many-body calculations remain unable to describe the enhanced collectivity below mid-shell in Sn approaching $N=Z=50$. We attribute the enhanced collectivity to proton particle-hole configurations beyond the necessarily limited shell-model spaces and suggest the asymmetry of the $B(E2)$-value trend around mid-shell to originate from enhanced proton excitations across $Z=50$ as $N=Z$ is approached.
Direct mass measurements of the low-spin $3/2^{(-)}$ and high-spin $13/2^{(+)}$ states in the neutron-deficient isotopes $^{195}$Po, $^{197}$Po, and high-spin $13/2^{(+)}$ state in $^{199}$Po were performed with the Penning-trap mass spectrometer ISO LTRAP at ISOLDE-CERN. These measurements allow the determination of the excitation energy of the isomeric state arising from the $ u$i$_{13/2}$ orbital in $^{195,197}$Po. Additionally, the excitation energy of isomeric states of lead, radon, and radium isotopes in this region were obtained from $alpha$-decay chains. The new excitation energies complete the knowledge of the energy systematics in the region and confirm for the first time that the $13/2^{(+)}$ states remain isomeric, independent of the number of valence neutrons.
The electric-quadrupole coupling constant of the ground states of the proton drip line nucleus $^{20}$Na($I^{pi}$ = 2$^{+}$, $T_{1/2}$ = 447.9 ms) and the neutron-deficient nucleus $^{21}$Na($I^{pi}$ = 3/2$^{+}$, $T_{1/2}$ = 22.49 s) in a hexagonal Z nO single crystal were precisely measured to be $|eqQ/h| = 690 pm 12$ kHz and 939 $pm$ 14 kHz, respectively, using the multi-frequency $beta$-ray detecting nuclear magnetic resonance technique under presence of an electric-quadrupole interaction. A electric-quadrupole coupling constant of $^{27}$Na in the ZnO crystal was also measured to be $|eqQ/h| = 48.4 pm 3.8$ kHz. The electric-quadrupole moments were extracted as $|Q(^{20}$Na)$|$ = 10.3 $pm$ 0.8 $e$ fm$^2$ and $|Q(^{21}$Na)$|$ = 14.0 $pm$ 1.1 $e$ fm$^2$, using the electric-coupling constant of $^{27}$Na and the known quadrupole moment of this nucleus as references. The present results are well explained by shell-model calculations in the full $sd$-shell model space.
57 - B. Blank , T. Goigoux , P. Ascher 2016
In an experiment with the BigRIPS separator at the RIKEN Nishina Center, the fragmentation of a $^{78}$Kr beam allowed the observation of new neutron-deficient isotopes at the proton drip-line. Clean identification spectra could be produced and $^{63 }$Se, $^{67}$Kr, and $^{68}$Kr were identified for the first time. In addition, $^{59}$Ge was also observed. Three of these isotopes, $^{59}$Ge, $^{63}$Se, and $^{67}$Kr, are potential candidates for ground-state two-proton radioactivity. In addition, the isotopes $^{58}$Ge, $^{62}$Se, and $^{66}$Kr were also sought but without success. The present experiment also allowed the determination of production cross sections for some of the most exotic isotopes. These measurements confirm the trend already observed that the empirical parameterization of fragmentation cross sections, EPAX, significantly overestimates experimental cross sections in this mass region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا