ترغب بنشر مسار تعليمي؟ اضغط هنا

High-K Isomers in 176W and Mechanisms of K-Violation

66   0   0.0 ( 0 )
 نشر من قبل ul
 تاريخ النشر 1995
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

An isomer, with t1/2 = 35 +- 10 ns and J, Kpi = 14, 14+, has been observed in the nucleus 176W using the reaction 150Nd(30Si,4n) at a beam energy of 133 MeV. The isomer exhibits an unusual pattern of decay in which the _majority_ of the flux proceeds directly to states with <K>=0, bypassing available levels of intermediate K. This severe breakdown of normal K-selection rules in 176W is compared with recent observations of K-violation in neighboring nuclei, within the framework of proposed theoretical approaches. The available data on these K-violating decays seem to have a consistent explanation in models of K-mixing which include large-amplitude fluctuations of the nuclear shape.

قيم البحث

اقرأ أيضاً

For the first time, a wide range of collective magnetic g-factors g$_{rm R}$, obtained from a novel analysis of experimental data for multi-quasiparticle configurations in high-K isomers, is shown to exhibit a striking systematic variation with the r elative number of proton and neutron quasiparticles, N$_{rm p}$ - N$_{rm n}$. Using the principle of additivity, the quasi-particle contribution to magnetism in high-K isomers of Lu - Re, Z = 71 - 75, has been estimated. Based on these estimates, band-structure branching ratio data are used to explore the behaviour of the collective contribution as the number and proton/neutron nature (N$_{rm p}$, N$_{rm n}$), of the quasi-particle excitations, change. Basic ideas of pairing, its quenching by quasi-particle excitation and the consequent changes to moment of inertia and collective magnetism are discussed. Existing model calculations do not reproduce the observed g$_{rm R}$ variation adequately. The paired superfluid system of nucleons in these nuclei, and their excitations, present properties of general physics interest. The new-found systematic behaviour of g$_{rm R}$ in multi-quasi-particle excitations of this unique system, showing variation from close to zero for multi-neutron states to above 0.5 for multi-proton states, opens a fresh window on these effects and raises the important question of just which nucleons contribute to the `collective properties of these nuclei.
To find candidates for long-lived high-K isomers in even-even Z=106-112 superheavy nuclei we study dominant alpha-decay channel of two- and four-quasi-particle configurations at a low excitation. Energies are calculated within the microscopic - macro scopic approach with the deformed Woods-Saxon potential. Configurations are fixed by a standard blocking procedure and their energy found by a subsequent minimization over deformations. Different excitation energies of a high-K configuration in parent and daughter nucleus seem particularly important for a hindrance of the alpha-decay. A strong hindrance is found for some four-quasi-particle states, particularly $K^{pi} = 20^{+}$ and/or $19^{+}$ states in $^{264-270}$Ds. Contrary to what was suggested in experimental papers, it is rather a proton configuration that leads to this strong hindrance. If not shortened by the electromagnetic decay, alpha half-lives of $sim$ 1 s could open new possibilities for studies of chemical/atomic properties of related elements.
Decay spectroscopy of the odd-proton nuclei $^{249}$Md and $^{251}$Md has been performed. High-$K$ isomeric states were identified for the first time in these two nuclei through their electromagnetic decay. An isomeric state with a half-life of $2.4( 3)$ ms and an excitation energy $geq 910$ keV was found in $^{249}$Md. In $^{251}$Md, an isomeric state with a half-life of $1.37(6)$ s and an excitation energy $geq 844$ keV was found. Similarly to the neighbouring $^{255}$Lr, these two isomeric states are interpreted as 3 quasi-particle high-$K$ states and compared to new theoretical calculations. Excited nuclear configurations were calculated within two scenarios: via blocking nuclear states located in proximity to the Fermi surface or/and using the quasiparticle Bardeen-Cooper-Schrieffer method. Relevant states were selected on the basis of the microscopic-macroscopic model with a deformed Woods-Saxon potential. The most probable candidates for the configurations of $K$-isomeric states in Md nuclei are proposed.
84 - Q.J. Ye , M. Hartmann , Y. Maeda 2012
Differential and total cross sections for the pp -> ppK+K- reaction have been measured at a proton beam energy of 2.83 GeV using the COSY-ANKE magnetic spectrometer. Detailed model descriptions fitted to a variety of one-dimensional distributions per mit the separation of the pp -> pp phi cross section from that of non-phi production. The differential spectra show that higher partial waves represent the majority of the pp -> pp phi total cross section at an excess energy of 76 MeV, whose energy dependence would then seem to require some s-wave phi-p enhancement near threshold. The non-phi data can be described in terms of the combined effects of two-body final state interactions using the same effective scattering parameters determined from lower energy data.
65 - X.Yuan , M.Buescher , D.Chiladze 2009
The total cross section for the dd -> 4He K+ K- reaction has been measured at a beam momentum of 3.7 GeV/c, corresponding to an excess energy of 39 MeV, which is the maximum possible at the Cooler Synchrotron COSY-J{u}lich. A deuterium cluster-jet ta rget and the ANKE forward magnetic spectrometer, placed inside the storage ring, have been employed in this investigation. We find a total cross section of sigma(tot) < 14 pb, which brings into question the viability of investigating the dd -> 4He a0(980) reaction as a means of studying isospin violation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا