ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-variability of alpha from realistic models of Oklo reactors

39   0   0.0 ( 0 )
 نشر من قبل Eduard Sharapov
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We reanalyze Oklo $^{149}$Sm data using realistic models of the natural nuclear reactors. Disagreements among recent Oklo determinations of the time evolution of $alpha$, the electromagnetic fine structure constant, are shown to be due to different reactor models, which led to different neutron spectra used in the calculations. We use known Oklo reactor epithermal spectral indices as criteria for selecting realistic reactor models. Two Oklo reactors, RZ2 and RZ10, were modeled with MCNP. The resulting neutron spectra were used to calculate the change in the $^{149}$Sm effective neutron capture cross section as a function of a possible shift in the energy of the 97.3-meV resonance. We independently deduce ancient $^{149}$Sm effective cross sections, and use these values to set limits on the time-variation of $alpha$. Our study resolves a contradictory situation with previous Oklo $alpha$-results. Our suggested $2 sigma$ bound on a possible time variation of $alpha$ over two billion years is stringent: $ -0.24 times 10^{-7} le frac{Delta alpha}{alpha} le 0.11 times 10^{-7}$, but model dependent in that it assumes only $alpha$ has varied over time.

قيم البحث

اقرأ أيضاً

Uncertainty in the operating temperatures of Oklo reactor zones impacts the precision of bounds derived for time variation of the fine structure constant $alpha$. Improved $^{176}$Lu/$^{175}$Lu thermometry has been discussed but its usefulness may be complicated by photo excitation of the isomeric state $^{176m}$Lu by $^{176}$Lu($gamma,gamma^prime $) fluorescence. We calculate prompt, delayed and equilibrium $gamma$-ray fluxes due to fission of $^{235}$U in pulsed mode operation of Oklo zone RZ10. We use Monte Carlo modeling to calculate the prompt flux. We use improved data libraries to estimate delayed and equilibrium spectra and fluxes. We find $gamma$-ray fluxes as a function of energy and derive values for the coefficients $lambda_{gamma,gamma^prime}$ that describe burn-up of $^{176}$Lu through the isomeric $^{176m}$Lu state. The contribution of the ($gamma,gamma^prime $) channel to the $^{176}$Lu/$^{175}$Lu isotopic ratio is negligible in comparison to the neutron burn-up channels. Lutetium thermometry is fully applicable to analyses of Oklo reactor data.
144 - L. Winslow 2011
From the discovery of the neutrino to the precision neutrino oscillation measurements in KamLAND, nuclear reactors have proven to be an important source of antineutrinos. As their power and our knowledge of neutrino physics has increased, more sensit ive measurements have become possible. The next generation of reactor antineutrino experiments require more detailed simulations of the reactor core. Many of the reactor simulation codes are proprietary which makes detailed studies difficult. Here we present the results of the open source DRAGON code and compare it to other industry standards for reactor modeling. We use published data from the Takahama reactor to determine the quality of the simulations. The propagation of the uncertainty to the antineutrino flux is also discussed.
We present techniques that allow for $alpha$-cluster channels with realistic $alpha$-particle wave functions from No Core Shell Model calculations to be constructed. We compare results of several clustering calculations with realistic $alpha$ wave fu nctions to those assuming a trivial $(0s)^4$ structure.
105 - D. Gazit , S. Bacca , N. Barnea 2005
The 4He total photoabsorption cross section is calculated with the realistic nucleon-nucleon potential Argonne V18 and the three-nucleon force (3NF) Urbana IX. Final state interaction is included rigorously via the Lorentz Integral Transform method. A rather pronounced giant resonance with peak cross sections of 3 (3.2) mb is obtained with (without) 3NF. Above 50 MeV strong 3NF effects, up to 35%, are present. Good agreement with experiment is found close to threshold. A comparison in the giant resonance region is inconclusive, since present data do not show a unique picture.
In the context of f(R)=R + alpha R^2 gravity, we study the existence of neutron and quark stars with no intermediate approximations in the generalised system of Tolman-Oppenheimer-Volkov equations. Analysis shows that for positive alphas the scalar c urvature does not drop to zero at the star surface (as in General Relativity) but exponentially decreases with distance. Also the stellar mass bounded by star surface decreases when the value alpha increases. Nonetheless distant observers would observe a gravitational mass due to appearance of a so-called gravitational sphere around the star. The non-zero curvature contribution to the gravitational mass eventually is shown to compensate the stellar mass decrease for growing alphas. We perform our analysis for several equations of state including purely hadronic configurations as well as hyperons and quark stars. In all cases, we assess that the relation between the parameter $alpha$ and the gravitational mass weakly depend upon the chosen equation of state. Another interesting feature is the increase of the star radius in comparison to General Relativity for stars with masses close to maximal, whereas for intermediate masses around 1.4-1.6 solar masses, the radius of star depends upon alpha very weakly. Also the decrease in the mass bounded by star surface may cause the surface redshift to decrease in R^2-gravity when compared to Einsteinian predictions. This effect is shown to hardly depend upon the observed gravitational mass. Finally, for negative values of alpha our analysis shows that outside the star the scalar curvature has damped oscillations but the contribution of the gravitational sphere into the gravitational mass increases indefinitely with radial distance putting into question the very existence of such relativistic stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا