ترغب بنشر مسار تعليمي؟ اضغط هنا

Application of the Time of Flight Technique for Lifetime Measurements with Relativistic Beams of Heavy Nuclei

49   0   0.0 ( 0 )
 نشر من قبل Starosta Krzysztof
 تاريخ النشر 2005
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A novel method for picosecond lifetime measurements of excited gamma-ray emitting nuclear states has been developed for fast beams from fragmentation reactions. A test measurement was carried out with a beam of 124Xe at an energy of ~55 MeV/u. The beam ions were Coulomb excited to the first 2+ state on a movable target. Excited nuclei emerged from the target and decayed in flight after a distance related to the lifetime. A stationary degrader positioned downstream with respect to the target was used to further reduce the velocity of the excited nuclei. As a consequence, the gamma-ray decays from the 2+ excited state that occurred before or after traversing the degrader were measured at a different Doppler shift. The gamma-ray spectra were analyzed from the forward ring of the Segmented Germanium Array; this ring positioned at 37 deg. simultaneously provides the largest sensitivity to changes in velocity and the best energy resolution. The ratio of intensities in the peaks at different Doppler shifts gives information about the lifetime if the velocity is measured. The results and range of the application of the method are discussed.

قيم البحث

اقرأ أيضاً

50 - X. Qiu , L. Tang , A. Margaryan 2012
The lifetime of a Lambda particle embedded in a nucleus (hypernucleus) decreases from that of free Lambda decay due to the opening of the Lambda N to NN weak decay channel. However, it is generally believed that the lifetime of a hypernucleus attains a constant value (saturation) for medium to heavy hypernuclear masses, yet this hypothesis has been difficult to verify. The present paper reports a direct measurement of the lifetime of medium-heavy hypernuclei produced with a photon-beam from Fe, Cu, Ag, and Bi targets. The recoiling hypernuclei were detected by a fission fragment detector using low-pressure multi-wire proportional chambers. The experiment agrees remarkably well with the only previously-measured single-species heavy-hypernucleus lifetime, that of Fe56_Lambda at KEK, and has significantly higher precision. The experiment disagrees with the measured lifetime of an unknown combination of heavy hypernuclei with 180<A<225 and, with a small statistical and systematic uncertainty, strongly favors the expected saturation of the lifetime decrease.
Plastic scintillation detectors for Time-of-Flight (TOF) measurements are almost essential for event-by-event identification of relativistic rare isotopes. In this work, a pair of plastic scintillation detectors of 50 $times$ 50 $times$ 3$^{t}$ mm$^3 $ and 80 $times$ 100 $times$ 3$^{t}$ mm$^3$ have been set up at the external target facility (ETF), Institute of Modern Physics. Their time, energy and position responses are measured with $^{18}$O primary beam at 400 MeV/nucleon. After the off-line walk-effect and position corrections, the time resolution of the two detectors are determined to be 27 ps ($sigma$) and 36 ps ($sigma$), respectively. Both detectors have nearly the same energy resolution of 3$%$ ($sigma$) and position resolution of 2 mm ($sigma$). The detectors have been used successfully in nuclear reaction cross section measurements, and will be be employed for upgrading RIBLL2 beam line at IMP as well as for the high energy branch at HIAF.
87 - K. P. Harrig 2020
A new double time-of-flight (dTOF) neutron spectroscopy technique has been developed for pulsed broad spectrum sources with a duty cycle that results in frame overlap, where fast neutrons from a given pulse overtake slower neutrons from previous puls es. Using a tunable beam at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory, neutrons were produced via thick-target breakup of 16 MeV deuterons on a beryllium target in the cyclotron vault. The breakup spectral shape was deduced from a dTOF measurement using an array of EJ-309 organic liquid scintillators. Simulation of the neutron detection efficiency of the scintillator array was performed using both GEANT4 and MCNP6. The efficiency-corrected spectral shape was normalized using a foil activation technique to obtain the energy-dependent flux of the neutron beam at zero degrees with respect to the incoming deuteron beam. The dTOF neutron spectrum was compared to spectra obtained using HEPROW and GRAVEL pulse height spectrum unfolding techniques. While the unfolding and dTOF results exhibit some discrepancies in shape, the integrated flux values agree within two standard deviations. This method obviates neutron time-of-flight spectroscopy challenges posed by pulsed beams with frame overlap and opens new opportunities for pulsed white neutron source facilities.
77 - A. Estrade , M. Matos , H. Schatz 2011
The location of electron capture heat sources in the crust of accreting neutron stars depends on the masses of extremely neutron-rich nuclei. We present first results from a new implementation of the time-of-flight technique to measure nuclear masses of rare isotopes at the National Superconducting Cyclotron Laboratory. The masses of 16 neutron-rich nuclei in the scandium -- nickel range were determined simultaneously, improving the accuracy compared to previous data in 12 cases. The masses of $^{61}${V}, $^{63}${Cr}, $^{66}${Mn}, and $^{74}${Ni} were measured for the first time with mass excesses of $-30.510(890)$ MeV, $-35.280(650)$ MeV, $-36.900(790)$ MeV, and $-49.210(990)$ MeV, respectively. With the measurement of the $^{66}$Mn mass, the locations of the two dominant electron capture heat sources in the outer crust of accreting neutron stars that exhibit superbursts are now experimentally constrained. We find that the location of the $^{66}$Fe$rightarrow^{66}$Mn electron capture transition occurs significantly closer to the surface than previously assumed because our new experimental Q-value is 2.1 MeV (2.6$sigma$) smaller than predicted by the FRDM mass model.
A precise measurement of the hypertriton lifetime is presented. In this letter, the mesonic decay modes $mathrm{{^3_Lambda}H rightarrow ^3He + pi^-}$ and $mathrm{{^3_Lambda}H rightarrow d + p + pi^-}$ are used to reconstruct the hypertriton from Au+A u collision data collected by the STAR collaboration at RHIC. A minimum $chi^2$ estimation is used to determine the lifetime of $tau = 142^{+24}_{-21},{rm (stat.)} {pm} 31,{rm (syst.)}$ ps. This lifetime is about 50% shorter than the lifetime $tau = 263pm2$ ps of a free $Lambda$, indicating strong hyperon-nucleon interaction in the hypernucleus system. The branching ratios of the mesonic decay channels are also determined to satisfy B.R.$_{(^3{rm He}+pi^-)}/$(B.R.$_{(^3{rm He}+pi^-)}+$B.R.$_{(d+p+pi^-)})$ = $0.32rm{pm}0.05,{rm (stat.)}pm 0.08,{rm (syst.)}$. Our ratio result favors the assignment $J(mathrm{^{3}_{Lambda}H})$ = $frac{1}{2}$ over $J(mathrm{^{3}_{Lambda}H})$ = $frac{3}{2}$. These measurements will help to constrain models of hyperon-baryon interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا