ترغب بنشر مسار تعليمي؟ اضغط هنا

Proton induced reactions on naturalU at 62.9 MeV

160   0   0.0 ( 0 )
 نشر من قبل guertin
 تاريخ النشر 2005
  مجال البحث
والبحث باللغة English
 تأليف A. Guertin




اسأل ChatGPT حول البحث

Double differential cross sections (DDCS) for light charged particles (proton, deuteron, triton, 3He, alpha) and neutrons produced by a proton beam impinging on a 238U target at 62.9 MeV were measured at the CYCLONE facility in Louvain-la-Neuve (Belgium). These measurements have been performed using two independent experimental set-ups ensuring neutron (DeMoN counters) and light charged particles (Si-Si-CsI telescopes) detection. The charged particle data were measured at 11 different angular positions from 25 degrees to 140 degrees allowing the determination of angle differential, energy differential and total production cross sections.



قيم البحث

اقرأ أيضاً

Theoretical models often differ significantly from measured data in their predictions of the magnitude of nuclear reactions that produce radionuclides for medical, research, and national security applications. In this paper, we compare a priori predi ctions from several state-of-the-art reaction modeling packages (CoH, EMPIRE, TALYS, and ALICE) to cross sections measured using the stacked-target activation method. The experiment was performed using the LBNL 88-Inch Cyclotron with beams of 25 and 55 MeV protons on a stack of iron, copper, and titanium foils. 34 excitation functions were measured for 4 < Ep < 55 MeV, including the first measurement of the independent cross sections for natFe(p,x) 49,51Cr, 51,52m,52g,56Mn, and 58m,58gCo. All of the models failed to reproduce the isomer-to-ground state ratio for reaction channels at compound and pre-compound energies, suggesting issues in modeling the deposition or distribution of angular momentum in these residual nuclei.
Excitation functions for the production of the 181,182m,182g,183,184g,186Re and 183,184Ta radionuclides from proton bombardment on natural tungsten were measured using the stacked-foil activation technique for the proton energies up to 40 MeV. A new data set has been given for the formation of the investigated radionuclides. Results are in good agreement with the earlier reported experimental data and theoretical calculations based on the ALICE-IPPE code. The thick target integral yields were also deduced from the measured excitation functions. The deduced yield values were compared with the directly measured thick target yield (TTY), and found acceptable agreement. The investigated radionuclide 186Re has remarkable applications in the field of nuclear medicine, whereas the data of 183,184gRe and 183Ta have potential applications in thin layer activation analysis and biomedical tracer studies, respectively.
$^{72}$As is a promising positron emitter for diagnostic imaging that can be employed locally using a $^{72}$Se generator. However, current reaction pathways to $^{72}$Se have insufficient nuclear data for efficient production using regional 100-200 MeV high-intensity proton accelerators. In order to address this deficiency, stacked-target irradiations were performed at LBNL, LANL, and BNL to measure the production of the $^{72}$Se/$^{72}$As PET generator system via $^{75}$As(p,x) between 35 and 200 MeV. This work provides the most well-characterized excitation function for $^{75}$As(p,4n)$^{72}$Se starting from threshold. Additional focus was given to report the first measurements of $^{75}$As(p,x)$^{68}$Ge and bolster an already robust production capability for the highly valuable $^{68}$Ge/$^{68}$Ga PET generator. Thick target yield comparisons with prior established formation routes to both generators are made. In total, high-energy proton-induced cross sections are reported for 55 measured residual products from $^{75}$As, Cu, and Ti targets, where the latter two materials were present as monitor foils. These results were compared with literature data as well as the default theoretical calculations of the nuclear model codes TALYS, CoH, EMPIRE, and ALICE. Reaction modeling at these energies is typically unsatisfactory due to few prior published data and many interacting physics models. Therefore, a detailed assessment of the TALYS code was performed with simultaneous parameter adjustments applied according to a standardized procedure. Particular attention was paid to the formulation of the two-component exciton model in the transition between the compound and pre-equilibrium regions, with a linked investigation of level density models for nuclei off of stability and their impact on modeling predictive power.
Double-differential cross sections for light charged particle production (up to A=4) were measured in 96 MeV neutron-induced reactions, at TSL laboratory cyclotron in Uppsala (Sweden). Measurements for three targets, Fe, Pb, and U, were performed usi ng two independent devices, SCANDAL and MEDLEY. The data were recorded with low energy thresholds and for a wide angular range (20-160 degrees). The normalization procedure used to extract the cross sections is based on the np elastic scattering reaction that we measured and for which we present experimental results. A good control of the systematic uncertainties affecting the results is achieved. Calculations using the exciton model are reported. Two different theoretical approches proposed to improve its predictive power regarding the complex particle emission are tested. The capabilities of each approach is illustrated by comparison with the 96 MeV data that we measured, and with other experimental results available in the literature.
315 - M. Avrigeanu 2007
Excitation functions were measured for the $^{55}$Mn(n,2n)$^{54}$Mn, $^{55}$Mn(n,$alpha$)$^{52}$V, $^{63}$Cu(n,$alpha$)$^{60}$Co, $^{65}$Cu(n,2n)$^{64}$Cu, and $^{65}$Cu(n,p)$^{65}$Ni reactions from 13.47 to 14.83 MeV. The experimental cross sections are compared with the results of calculations including all activation channels for the stable isotopes of Mn and Cu, for neutron incident energies up to 50 MeV. Within the energy range up to 20 MeV the model calculations are most sensitive to the parameters related to nuclei in the early stages of the reaction, while the model assumptions are better established by analysis of the data in the energy range 20-40 MeV. While the present analysis has taken advantage of both a new set of accurate measured cross sections around 14 MeV and the larger data basis fortunately available between 20 and 40 MeV for the Mn and Cu isotopes, the need of additional measurements below as well as above 40 MeV is pointed out. Keywords: 55Mn, 63,65Cu, E$leq$40 MeV, Neutron activation cross section measurements, Nuclear reactions, Model calculations, Manganese, Copper
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا